summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/pfb/chirp_channelize.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/pfb/chirp_channelize.py')
-rwxr-xr-xgnuradio-examples/python/pfb/chirp_channelize.py203
1 files changed, 0 insertions, 203 deletions
diff --git a/gnuradio-examples/python/pfb/chirp_channelize.py b/gnuradio-examples/python/pfb/chirp_channelize.py
deleted file mode 100755
index 951255d3b..000000000
--- a/gnuradio-examples/python/pfb/chirp_channelize.py
+++ /dev/null
@@ -1,203 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, blks2
-import sys, time
-
-try:
- import scipy
- from scipy import fftpack
-except ImportError:
- print "Error: Program requires scipy (see: www.scipy.org)."
- sys.exit(1)
-
-try:
- import pylab
- from pylab import mlab
-except ImportError:
- print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
- sys.exit(1)
-
-class pfb_top_block(gr.top_block):
- def __init__(self):
- gr.top_block.__init__(self)
-
- self._N = 200000 # number of samples to use
- self._fs = 9000 # initial sampling rate
- self._M = 9 # Number of channels to channelize
-
- # Create a set of taps for the PFB channelizer
- self._taps = gr.firdes.low_pass_2(1, self._fs, 500, 20,
- attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
-
- # Calculate the number of taps per channel for our own information
- tpc = scipy.ceil(float(len(self._taps)) / float(self._M))
- print "Number of taps: ", len(self._taps)
- print "Number of channels: ", self._M
- print "Taps per channel: ", tpc
-
- repeated = True
- if(repeated):
- self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 110)
- else:
- amp = 100
- data = scipy.arange(0, amp, amp/float(self._N))
- self.vco_input = gr.vector_source_f(data, False)
-
- # Build a VCO controlled by either the sinusoid or single chirp tone
- # Then convert this to a complex signal
- self.vco = gr.vco_f(self._fs, 225, 1)
- self.f2c = gr.float_to_complex()
-
- self.head = gr.head(gr.sizeof_gr_complex, self._N)
-
- # Construct the channelizer filter
- self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
-
- # Construct a vector sink for the input signal to the channelizer
- self.snk_i = gr.vector_sink_c()
-
- # Connect the blocks
- self.connect(self.vco_input, self.vco, self.f2c)
- self.connect(self.f2c, self.head, self.pfb)
- self.connect(self.f2c, self.snk_i)
-
- # Create a vector sink for each of M output channels of the filter and connect it
- self.snks = list()
- for i in xrange(self._M):
- self.snks.append(gr.vector_sink_c())
- self.connect((self.pfb, i), self.snks[i])
-
-
-def main():
- tstart = time.time()
-
- tb = pfb_top_block()
- tb.run()
-
- tend = time.time()
- print "Run time: %f" % (tend - tstart)
-
- if 1:
- fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
- fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
- fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
- fig3 = pylab.figure(4, figsize=(16,9), facecolor="w")
-
- Ns = 650
- Ne = 20000
-
- fftlen = 8192
- winfunc = scipy.blackman
- fs = tb._fs
-
- # Plot the input signal on its own figure
- d = tb.snk_i.data()[Ns:Ne]
- spin_f = fig_in.add_subplot(2, 1, 1)
-
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
- f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
- pin_f = spin_f.plot(f_in, X_in, "b")
- spin_f.set_xlim([min(f_in), max(f_in)+1])
- spin_f.set_ylim([-200.0, 50.0])
-
- spin_f.set_title("Input Signal", weight="bold")
- spin_f.set_xlabel("Frequency (Hz)")
- spin_f.set_ylabel("Power (dBW)")
-
-
- Ts = 1.0/fs
- Tmax = len(d)*Ts
-
- t_in = scipy.arange(0, Tmax, Ts)
- x_in = scipy.array(d)
- spin_t = fig_in.add_subplot(2, 1, 2)
- pin_t = spin_t.plot(t_in, x_in.real, "b")
- pin_t = spin_t.plot(t_in, x_in.imag, "r")
-
- spin_t.set_xlabel("Time (s)")
- spin_t.set_ylabel("Amplitude")
-
- Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
- Nrows = int(scipy.floor(tb._M / Ncols))
- if(tb._M % Ncols != 0):
- Nrows += 1
-
- # Plot each of the channels outputs. Frequencies on Figure 2 and
- # time signals on Figure 3
- fs_o = tb._fs / tb._M
- Ts_o = 1.0/fs_o
- Tmax_o = len(d)*Ts_o
- for i in xrange(len(tb.snks)):
- # remove issues with the transients at the beginning
- # also remove some corruption at the end of the stream
- # this is a bug, probably due to the corner cases
- d = tb.snks[i].data()[Ns:Ne]
-
- sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
- X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
- window = lambda d: d*winfunc(fftlen),
- scale_by_freq=True)
- X_o = 10.0*scipy.log10(abs(X))
- f_o = freq
- p2_f = sp1_f.plot(f_o, X_o, "b")
- sp1_f.set_xlim([min(f_o), max(f_o)+1])
- sp1_f.set_ylim([-200.0, 50.0])
-
- sp1_f.set_title(("Channel %d" % i), weight="bold")
- sp1_f.set_xlabel("Frequency (Hz)")
- sp1_f.set_ylabel("Power (dBW)")
-
- x_o = scipy.array(d)
- t_o = scipy.arange(0, Tmax_o, Ts_o)
- sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
- p2_o = sp2_o.plot(t_o, x_o.real, "b")
- p2_o = sp2_o.plot(t_o, x_o.imag, "r")
- sp2_o.set_xlim([min(t_o), max(t_o)+1])
- sp2_o.set_ylim([-2, 2])
-
- sp2_o.set_title(("Channel %d" % i), weight="bold")
- sp2_o.set_xlabel("Time (s)")
- sp2_o.set_ylabel("Amplitude")
-
-
- sp3 = fig3.add_subplot(1,1,1)
- p3 = sp3.plot(t_o, x_o.real)
- sp3.set_xlim([min(t_o), max(t_o)+1])
- sp3.set_ylim([-2, 2])
-
- sp3.set_title("All Channels")
- sp3.set_xlabel("Time (s)")
- sp3.set_ylabel("Amplitude")
-
- pylab.show()
-
-
-if __name__ == "__main__":
- try:
- main()
- except KeyboardInterrupt:
- pass
-