summaryrefslogtreecommitdiff
path: root/gnuradio-core/src/lib/hier/gr_cpm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-core/src/lib/hier/gr_cpm.cc')
-rw-r--r--gnuradio-core/src/lib/hier/gr_cpm.cc210
1 files changed, 0 insertions, 210 deletions
diff --git a/gnuradio-core/src/lib/hier/gr_cpm.cc b/gnuradio-core/src/lib/hier/gr_cpm.cc
deleted file mode 100644
index 5eda182b2..000000000
--- a/gnuradio-core/src/lib/hier/gr_cpm.cc
+++ /dev/null
@@ -1,210 +0,0 @@
-/* -*- c++ -*- */
-/*
- * Copyright 2010 Free Software Foundation, Inc.
- *
- * GNU Radio is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3, or (at your option)
- * any later version.
- *
- * GNU Radio is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GNU Radio; see the file COPYING. If not, write to
- * the Free Software Foundation, Inc., 51 Franklin Street,
- * Boston, MA 02110-1301, USA.
- */
-
-// Calculate the taps for the CPM phase responses
-
-#ifdef HAVE_CONFIG_H
-#include "config.h"
-#endif
-
-#include <cmath>
-#include <cfloat>
-#include <gr_cpm.h>
-
-
-//! Normalised sinc function, sinc(x)=sin(pi*x)/pi*x
-inline double
-sinc(double x)
-{
- if (x == 0) {
- return 1.0;
- }
-
- return sin(M_PI * x) / (M_PI * x);
-}
-
-
-//! Taps for L-RC CPM (Raised cosine of length L symbols)
-std::vector<float>
-generate_cpm_lrc_taps(unsigned samples_per_sym, unsigned L)
-{
- std::vector<float> taps(samples_per_sym * L, 1.0/L/samples_per_sym);
- for (int i = 0; i < samples_per_sym * L; i++) {
- taps[i] *= 1 - cos(M_TWOPI * i / L / samples_per_sym);
- }
-
- return taps;
-}
-
-
-/*! Taps for L-SRC CPM (Spectral raised cosine of length L symbols).
- *
- * L-SRC has a time-continuous phase response function of
- *
- * g(t) = 1/LT * sinc(2t/LT) * cos(beta * 2pi t / LT) / (1 - (4beta / LT * t)^2)
- *
- * which is the Fourier transform of a cos-rolloff function with rolloff
- * beta, and looks like a sinc-function, multiplied with a rolloff term.
- * We return the main lobe of the sinc, i.e., everything between the
- * zero crossings.
- * The time-discrete IR is thus
- *
- * g(k) = 1/Ls * sinc(2k/Ls) * cos(beta * pi k / Ls) / (1 - (4beta / Ls * k)^2)
- * where k = 0...Ls-1
- * and s = samples per symbol.
- */
-std::vector<float>
-generate_cpm_lsrc_taps(unsigned samples_per_sym, unsigned L, double beta)
-{
- double Ls = (double) L * samples_per_sym;
- std::vector<double> taps_d(Ls, 0.0);
- std::vector<float> taps(Ls, 0.0);
-
- for (int i = 0; i < samples_per_sym * L; i++) {
- double k = i - Ls/2; // Causal to acausal
-
- taps_d[i] = 1.0 / Ls * sinc(2.0 * k / Ls);
-
- // For k = +/-Ls/4*beta, the rolloff term's cos-function becomes zero
- // and the whole thing converges to PI/4 (to prove this, use de
- // l'hopital's rule).
- if (fabs(abs(k) - Ls/4/beta) < 2*DBL_EPSILON) {
- taps_d[i] *= M_PI_4;
- } else {
- double tmp = 4.0 * beta * k / Ls;
- taps_d[i] *= cos(beta * M_TWOPI * k / Ls) / (1 - tmp * tmp);
- }
- sum += taps_d[i];
- }
- for (int i = 0; i < samples_per_sym * L; i++) {
- taps[i] = (float) taps_d[i] / sum;
- }
-
- return taps;
-}
-
-
-//! Taps for L-REC CPM (Rectangular pulse shape of length L symbols)
-std::vector<float>
-generate_cpm_lrec_taps(unsigned samples_per_sym, unsigned L)
-{
- return std::vector<float>(samples_per_sym * L, 1.0/L/samples_per_sym);
-}
-
-
-//! Helper function for TFM
-double tfm_g0(double k, double sps)
-{
- if (k < 2 * DBL_EPSILON) {
- return 1.145393004159143; // 1 + pi^2/48 / sqrt(2)
- }
-
- const double pi2_24 = 0.411233516712057; // pi^2/24
- double f = M_PI * k / sps;
- return sinc(k/sps) - pi2_24 * (2 * sin(f) - 2*f*cos(f) - f*f*sin(f)) / (f*f*f);
-}
-
-
-//! Taps for TFM CPM (Tamed frequency modulation)
-//
-// See [2, Chapter 2.7.2].
-//
-// [2]: Anderson, Aulin and Sundberg; Digital Phase Modulation
-std::vector<float>
-generate_cpm_tfm_taps(unsigned sps, unsigned L)
-{
- double causal_shift = (double) L * sps / 2;
- std::vector<double> taps_d(Ls, 0.0);
- std::vector<float> taps(Ls, 0.0);
-
- double sum = 0;
- for (int i = 0; i < sps * L; i++) {
- double k = (double)i - causal_shift; // Causal to acausal
-
- taps_d[i] = tfm_g0(k - sps, sps) +
- 2 * tfm_g0(k, sps) +
- tfm_g0(k + sps, sps);
- sum += taps_d[i];
- }
- for (int i = 0; i < samples_per_sym * L; i++) {
- taps[i] = (float) taps_d[i] / sum;
- }
-
- return taps;
-}
-
-
-//! Taps for Gaussian CPM. Phase response is truncated after \p L symbols.
-// \p bt sets the 3dB-time-bandwidth product.
-//
-// Note: for h = 0.5, this is the phase response for GMSK.
-//
-// This C99-compatible formula for the taps is taken straight
-// from [1, Chapter 9.2.3].
-// A version in Q-notation can be found in [2, Chapter 2.7.2].
-//
-// [1]: Karl-Dirk Kammeyer; Nachrichtenübertragung, 4th Edition.
-// [2]: Anderson, Aulin and Sundberg; Digital Phase Modulation
-//
-std::vector<float>
-generate_cpm_gaussian_taps(unsigned samples_per_sym, unsigned L, double bt)
-{
- double Ls = (double) L * samples_per_sym;
- std::vector<double> taps_d(Ls, 0.0);
- std::vector<float> taps(Ls, 0.0);
-
- // alpha = sqrt(2/ln(2)) * pi * BT
- double alpha = 5.336446256636997 * bt;
- for (int i = 0; i < samples_per_sym * L; i++) {
- double k = i - Ls/2; // Causal to acausal
- taps_d[i] = (erf(alpha * (k / samples_per_sym + 0.5)) -
- erf(alpha * (k / samples_per_sym - 0.5)))
- * 0.5 / samples_per_sym;
- taps[i] = (float) taps_d[i];
- }
-
- return taps;
-}
-
-
-std::vector<float>
-gr_cpm::phase_response(cpm_type type, unsigned samples_per_sym, unsigned L, double beta)
-{
- switch (type) {
- case LRC:
- return generate_cpm_lrc_taps(samples_per_sym, L);
-
- case LSRC:
- return generate_cpm_lsrc_taps(samples_per_sym, L, beta);
-
- case LREC:
- return generate_cpm_lrec_taps(samples_per_sym, L);
-
- case TFM:
- return generate_cpm_tfm_taps(samples_per_sym, L);
-
- case GAUSSIAN:
- return generate_cpm_gaussian_taps(samples_per_sym, L, beta);
-
- default:
- return generate_cpm_lrec_taps(samples_per_sym, 1);
- }
-}
-