summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--gr-radio-astronomy/src/python/Makefile.am3
-rwxr-xr-xgr-radio-astronomy/src/python/ra_waterfallsink.py510
-rwxr-xr-xgr-radio-astronomy/src/python/usrp_ra_receiver.py155
3 files changed, 661 insertions, 7 deletions
diff --git a/gr-radio-astronomy/src/python/Makefile.am b/gr-radio-astronomy/src/python/Makefile.am
index e06a2607c..bede7f6e2 100644
--- a/gr-radio-astronomy/src/python/Makefile.am
+++ b/gr-radio-astronomy/src/python/Makefile.am
@@ -49,7 +49,8 @@ ourpython_PYTHON = \
wxguipython_PYTHON = \
ra_stripchartsink.py \
- ra_fftsink.py
+ ra_fftsink.py \
+ ra_waterfallsink.py
# and here for applications you want installed in prefix/bin
diff --git a/gr-radio-astronomy/src/python/ra_waterfallsink.py b/gr-radio-astronomy/src/python/ra_waterfallsink.py
new file mode 100755
index 000000000..b6c63ac25
--- /dev/null
+++ b/gr-radio-astronomy/src/python/ra_waterfallsink.py
@@ -0,0 +1,510 @@
+#!/usr/bin/env python
+#
+# Copyright 2003,2004,2005 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING. If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, gru, window
+from gnuradio.wxgui import stdgui
+import wx
+import gnuradio.wxgui.plot as plot
+import Numeric
+import os
+import threading
+import math
+
+default_fftsink_size = (640,240)
+default_fft_rate = gr.prefs().get_long('wxgui', 'fft_rate', 15)
+
+class ra_waterfallsink_base(object):
+ def __init__(self, input_is_real=False, baseband_freq=0,
+ sample_rate=1, fft_size=512,
+ fft_rate=default_fft_rate,
+ average=False, avg_alpha=None, title='', ofunc=None, xydfunc=None, scaling=100):
+
+ # initialize common attributes
+ self.baseband_freq = baseband_freq
+ self.sample_rate = sample_rate
+ self.fft_size = fft_size
+ self.fft_rate = fft_rate
+ self.average = average
+ self.ofunc = ofunc
+ self.xydfunc = xydfunc
+ self.scaling = scaling
+ if avg_alpha is None:
+ self.avg_alpha = 2.0 / fft_rate
+ else:
+ self.avg_alpha = avg_alpha
+ self.title = title
+ self.input_is_real = input_is_real
+ self.msgq = gr.msg_queue(2) # queue up to 2 messages
+
+ def set_average(self, average):
+ self.average = average
+ if average:
+ self.avg.set_taps(self.avg_alpha)
+ else:
+ self.avg.set_taps(1.0)
+
+ def set_avg_alpha(self, avg_alpha):
+ self.avg_alpha = avg_alpha
+
+ def set_baseband_freq(self, baseband_freq):
+ self.baseband_freq = baseband_freq
+
+ def set_sample_rate(self, sample_rate):
+ self.sample_rate = sample_rate
+ self._set_n()
+
+ def set_scaling(self,scaling):
+ self.scaling = scaling
+ return
+
+ def _set_n(self):
+ self.one_in_n.set_n(max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
+
+class ra_waterfallsink_f(gr.hier_block, ra_waterfallsink_base):
+ def __init__(self, fg, parent, baseband_freq=0,
+ y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
+ fft_rate=default_fft_rate, average=False, avg_alpha=None,
+ title='', scaling=100, size=default_fftsink_size, ofunc=None, xydfunc=None):
+
+ ra_waterfallsink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq,
+ sample_rate=sample_rate, fft_size=fft_size,
+ fft_rate=fft_rate,
+ average=average, avg_alpha=avg_alpha, title=title, ofunc=ofunc, xydfunc=xydfunc, scaling=scaling)
+
+ s2p = gr.serial_to_parallel(gr.sizeof_float, self.fft_size)
+ self.one_in_n = gr.keep_one_in_n(gr.sizeof_float * self.fft_size,
+ max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
+ mywindow = window.blackmanharris(self.fft_size)
+ fft = gr.fft_vfc(self.fft_size, True, mywindow)
+ c2mag = gr.complex_to_mag(self.fft_size)
+ self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
+ log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size))
+ sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True)
+
+ fg.connect (s2p, self.one_in_n, fft, c2mag, self.avg, log, sink)
+ gr.hier_block.__init__(self, fg, s2p, sink)
+
+ self.win = ra_waterfall_window(self, parent, size=size)
+ self.set_average(self.average)
+
+
+class ra_waterfallsink_c(gr.hier_block, ra_waterfallsink_base):
+ def __init__(self, fg, parent, baseband_freq=0,
+ y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
+ fft_rate=default_fft_rate, average=False,
+ avg_alpha=None, scaling=100,
+ title='', size=default_fftsink_size, ofunc=None, xydfunc=None):
+
+ ra_waterfallsink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq,
+ sample_rate=sample_rate, fft_size=fft_size,
+ fft_rate=fft_rate,
+ average=average,
+ avg_alpha=avg_alpha,
+ title=title, ofunc=ofunc,
+ xydfunc=xydfunc, scaling=scaling)
+
+ s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, self.fft_size)
+ self.one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * self.fft_size,
+ max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
+
+ mywindow = window.blackmanharris(self.fft_size)
+ fft = gr.fft_vcc(self.fft_size, True, mywindow)
+ c2mag = gr.complex_to_mag(self.fft_size)
+ self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
+ log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size))
+ sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True)
+
+ fg.connect(s2p, self.one_in_n, fft, c2mag, self.avg, log, sink)
+ gr.hier_block.__init__(self, fg, s2p, sink)
+
+ self.win = ra_waterfall_window(self, parent, size=size)
+ self.set_average(self.average)
+
+
+# ------------------------------------------------------------------------
+
+myDATA_EVENT = wx.NewEventType()
+EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0)
+
+
+class DataEvent(wx.PyEvent):
+ def __init__(self, data):
+ wx.PyEvent.__init__(self)
+ self.SetEventType (myDATA_EVENT)
+ self.data = data
+
+ def Clone (self):
+ self.__class__ (self.GetId())
+
+
+class input_watcher (threading.Thread):
+ def __init__ (self, msgq, fft_size, event_receiver, **kwds):
+ threading.Thread.__init__ (self, **kwds)
+ self.setDaemon (1)
+ self.msgq = msgq
+ self.fft_size = fft_size
+ self.event_receiver = event_receiver
+ self.keep_running = True
+ self.start ()
+
+ def run (self):
+ while (self.keep_running):
+ msg = self.msgq.delete_head() # blocking read of message queue
+ itemsize = int(msg.arg1())
+ nitems = int(msg.arg2())
+
+ s = msg.to_string() # get the body of the msg as a string
+
+ # There may be more than one FFT frame in the message.
+ # If so, we take only the last one
+ if nitems > 1:
+ start = itemsize * (nitems - 1)
+ s = s[start:start+itemsize]
+
+ complex_data = Numeric.fromstring (s, Numeric.Float32)
+ de = DataEvent (complex_data)
+ wx.PostEvent (self.event_receiver, de)
+ del de
+
+
+class ra_waterfall_window (wx.Panel):
+ def __init__ (self, fftsink, parent, id = -1,
+ pos = wx.DefaultPosition, size = wx.DefaultSize,
+ style = wx.DEFAULT_FRAME_STYLE, name = ""):
+ wx.Panel.__init__(self, parent, id, pos, size, style, name)
+
+ self.fftsink = fftsink
+ self.bm = wx.EmptyBitmap(self.fftsink.fft_size, 300, -1)
+
+ self.scale_factor = self.fftsink.scaling
+
+ dc1 = wx.MemoryDC()
+ dc1.SelectObject(self.bm)
+ dc1.Clear()
+
+ self.pens = self.make_pens()
+
+ wx.EVT_PAINT( self, self.OnPaint )
+ wx.EVT_CLOSE (self, self.on_close_window)
+ EVT_DATA_EVENT (self, self.set_data)
+
+ self.build_popup_menu()
+
+ wx.EVT_CLOSE (self, self.on_close_window)
+ self.Bind(wx.EVT_RIGHT_UP, self.on_right_click)
+
+ self.input_watcher = input_watcher(fftsink.msgq, fftsink.fft_size, self)
+
+
+ def on_close_window (self, event):
+ print "ra_waterfall_window: on_close_window"
+ self.keep_running = False
+
+ def const_list(self,const,len):
+ return [const] * len
+
+ def make_colormap(self):
+ r = []
+ r.extend(self.const_list(0,96))
+ r.extend(range(0,255,4))
+ r.extend(self.const_list(255,64))
+ r.extend(range(255,128,-4))
+
+ g = []
+ g.extend(self.const_list(0,32))
+ g.extend(range(0,255,4))
+ g.extend(self.const_list(255,64))
+ g.extend(range(255,0,-4))
+ g.extend(self.const_list(0,32))
+
+ b = range(128,255,4)
+ b.extend(self.const_list(255,64))
+ b.extend(range(255,0,-4))
+ b.extend(self.const_list(0,96))
+ return (r,g,b)
+
+ def make_pens(self):
+ (r,g,b) = self.make_colormap()
+ pens = []
+ for i in range(0,256):
+ colour = wx.Colour(r[i], g[i], b[i])
+ pens.append( wx.Pen(colour, 2, wx.SOLID))
+ return pens
+
+ def OnPaint(self, event):
+ dc = wx.PaintDC(self)
+ self.DoDrawing(dc)
+
+ def DoDrawing(self, dc=None):
+ if dc is None:
+ dc = wx.ClientDC(self)
+ dc.DrawBitmap(self.bm, 0, 0, False )
+
+
+ def const_list(self,const,len):
+ a = [const]
+ for i in range(1,len):
+ a.append(const)
+ return a
+
+ def make_colormap(self):
+ r = []
+ r.extend(self.const_list(0,96))
+ r.extend(range(0,255,4))
+ r.extend(self.const_list(255,64))
+ r.extend(range(255,128,-4))
+
+ g = []
+ g.extend(self.const_list(0,32))
+ g.extend(range(0,255,4))
+ g.extend(self.const_list(255,64))
+ g.extend(range(255,0,-4))
+ g.extend(self.const_list(0,32))
+
+ b = range(128,255,4)
+ b.extend(self.const_list(255,64))
+ b.extend(range(255,0,-4))
+ b.extend(self.const_list(0,96))
+ return (r,g,b)
+
+ def set_data (self, evt):
+ dB = evt.data
+ L = len (dB)
+
+ if (self.fftsink.ofunc != None):
+ self.fftsink.ofunc (evt.data, L)
+
+ dc1 = wx.MemoryDC()
+ dc1.SelectObject(self.bm)
+ dc1.Blit(0,1,self.fftsink.fft_size,300,dc1,0,0,wx.COPY,False,-1,-1)
+
+ x = max(abs(self.fftsink.sample_rate), abs(self.fftsink.baseband_freq))
+ if x >= 1e9:
+ sf = 1e-9
+ units = "GHz"
+ elif x >= 1e6:
+ sf = 1e-6
+ units = "MHz"
+ else:
+ sf = 1e-3
+ units = "kHz"
+
+
+ if self.fftsink.input_is_real: # only plot 1/2 the points
+ d_max = L/2
+ p_width = 2
+ else:
+ d_max = L/2
+ p_width = 1
+
+ WATERFALL_WIDTH=1024
+ scale_factor = self.scale_factor
+ x_positions = Numeric.zeros(WATERFALL_WIDTH, Numeric.Float64)
+ y_values = Numeric.zeros(WATERFALL_WIDTH, Numeric.Float64)
+ x_scale = L / WATERFALL_WIDTH
+ x_scale = int(x_scale)
+ if self.fftsink.input_is_real: # real fft
+ for x_pos in range(0, d_max):
+ value = int(dB[x_pos] * scale_factor)
+ value = min(255, max(0, value))
+ idx = int(x_pos/x_scale)
+ idx = min(WATERFALL_WIDTH-1,idx)
+ x_positions[idx] = idx
+ y_values[idx] = y_values[idx] + value
+ #dc1.SetPen(self.pens[value])
+ #dc1.DrawRectangle(x_pos*p_width, 0, p_width, 1)
+ else: # complex fft
+ for x_pos in range(0, d_max): # positive freqs
+ value = int(dB[x_pos] * scale_factor)
+ value = min(255, max(0, value))
+ idx = int((x_pos+d_max)/x_scale)
+ idx = min(WATERFALL_WIDTH-1,idx)
+ x_positions[idx] = idx
+ y_values[idx] = y_values[idx] + value
+ #dc1.SetPen(self.pens[value])
+ #dc1.DrawRectangle(x_pos*p_width + d_max, 0, p_width, 1)
+ for x_pos in range(0 , d_max): # negative freqs
+ value = int(dB[x_pos+d_max] * scale_factor)
+ value = min(255, max(0, value))
+ idx = int((x_pos)/x_scale)
+ idx = min(WATERFALL_WIDTH-1,idx)
+ x_positions[idx] = idx
+ y_values[idx] = y_values[idx] + value
+ #dc1.SetPen(self.pens[value])
+ #dc1.DrawRectangle(x_pos*p_width, 0, p_width, 1)
+
+ for i in range(0,WATERFALL_WIDTH):
+ yv = y_values[i]/x_scale
+ yv = int(min(255,yv))
+ dc1.SetPen(self.pens[yv])
+ dc1.DrawRectangle(i*p_width, 0, p_width, 1)
+
+ self.DoDrawing (None)
+
+ def on_average(self, evt):
+ # print "on_average"
+ self.fftsink.set_average(evt.IsChecked())
+
+ def on_right_click(self, event):
+ menu = self.popup_menu
+ for id, pred in self.checkmarks.items():
+ item = menu.FindItemById(id)
+ item.Check(pred())
+ self.PopupMenu(menu, event.GetPosition())
+
+ def on_scaling(self, evt):
+ Id = evt.GetId()
+ if Id == self.id_scaling_100:
+ self.fftsink.set_scaling(100)
+ elif Id == self.id_scaling_150:
+ self.fftsink.set_scaling(150)
+ elif Id == self.id_scaling_200:
+ self.fftsink.set_scaling(200)
+ elif Id == self.id_scaling_250:
+ self.fftsink.set_scaling(250)
+ elif Id == self.id_scaling_300:
+ self.fftsink.set_scaling(300)
+
+ def build_popup_menu(self):
+ self.id_scaling_100 = wx.NewId()
+ self.id_scaling_150 = wx.NewId()
+ self.id_scaling_200 = wx.NewId()
+ self.id_scaling_250 = wx.NewId()
+ self.id_scaling_300 = wx.NewId()
+ self.id_average = wx.NewId()
+
+ self.Bind(wx.EVT_MENU, self.on_average, id=self.id_average)
+ self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_100)
+ self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_150)
+ self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_200)
+ self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_250)
+ self.Bind(wx.EVT_MENU, self.on_scaling, id=self.id_scaling_300)
+
+
+ # make a menu
+ menu = wx.Menu()
+ self.popup_menu = menu
+ menu.AppendCheckItem(self.id_average, "Average")
+ menu.AppendCheckItem(self.id_scaling_100, "100 scale factor")
+ menu.AppendCheckItem(self.id_scaling_150, "150 scale factor")
+ menu.AppendCheckItem(self.id_scaling_200, "200 scale factor")
+ menu.AppendCheckItem(self.id_scaling_250, "250 scale factor")
+ menu.AppendCheckItem(self.id_scaling_300, "300 scale factor")
+
+ self.checkmarks = {
+ self.id_average : lambda : self.fftsink.average,
+ self.id_scaling_100 : lambda : self.fftsink.scaling == 100,
+ self.id_scaling_150 : lambda : self.fftsink.scaling == 150,
+ self.id_scaling_200 : lambda : self.fftsink.scaling == 200,
+ self.id_scaling_250 : lambda : self.fftsink.scaling == 250,
+ self.id_scaling_300 : lambda : self.fftsink.scaling == 300,
+ }
+
+
+def next_up(v, seq):
+ """
+ Return the first item in seq that is > v.
+ """
+ for s in seq:
+ if s > v:
+ return s
+ return v
+
+def next_down(v, seq):
+ """
+ Return the last item in seq that is < v.
+ """
+ rseq = list(seq[:])
+ rseq.reverse()
+
+ for s in rseq:
+ if s < v:
+ return s
+ return v
+
+
+# ----------------------------------------------------------------
+# Deprecated interfaces
+# ----------------------------------------------------------------
+
+# returns (block, win).
+# block requires a single input stream of float
+# win is a subclass of wxWindow
+
+def make_ra_waterfallsink_f(fg, parent, title, fft_size, input_rate):
+
+ block = ra_waterfallsink_f(fg, parent, title=title, fft_size=fft_size,
+ sample_rate=input_rate)
+ return (block, block.win)
+
+# returns (block, win).
+# block requires a single input stream of gr_complex
+# win is a subclass of wxWindow
+
+def make_ra_waterfallsink_c(fg, parent, title, fft_size, input_rate):
+ block = ra_waterfallsink_c(fg, parent, title=title, fft_size=fft_size,
+ sample_rate=input_rate)
+ return (block, block.win)
+
+
+# ----------------------------------------------------------------
+# Standalone test app
+# ----------------------------------------------------------------
+
+class test_app_flow_graph (stdgui.gui_flow_graph):
+ def __init__(self, frame, panel, vbox, argv):
+ stdgui.gui_flow_graph.__init__ (self, frame, panel, vbox, argv)
+
+ fft_size = 512
+
+ # build our flow graph
+ input_rate = 20.000e3
+
+ # Generate a complex sinusoid
+ src1 = gr.sig_source_c (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000)
+ #src1 = gr.sig_source_c (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
+
+ # We add these throttle blocks so that this demo doesn't
+ # suck down all the CPU available. Normally you wouldn't use these.
+ thr1 = gr.throttle(gr.sizeof_gr_complex, input_rate)
+
+ sink1 = ra_waterfallsink_c (self, panel, title="Complex Data", fft_size=fft_size,
+ sample_rate=input_rate, baseband_freq=100e3)
+ vbox.Add (sink1.win, 1, wx.EXPAND)
+ self.connect (src1, thr1, sink1)
+
+ # generate a real sinusoid
+ src2 = gr.sig_source_f (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000)
+ #src2 = gr.sig_source_f (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
+ thr2 = gr.throttle(gr.sizeof_float, input_rate)
+ sink2 = ra_waterfallsink_f (self, panel, title="Real Data", fft_size=fft_size,
+ sample_rate=input_rate, baseband_freq=100e3)
+ vbox.Add (sink2.win, 1, wx.EXPAND)
+ self.connect (src2, thr2, sink2)
+
+def main ():
+ app = stdgui.stdapp (test_app_flow_graph,
+ "Waterfall Sink Test App")
+ app.MainLoop ()
+
+if __name__ == '__main__':
+ main ()
diff --git a/gr-radio-astronomy/src/python/usrp_ra_receiver.py b/gr-radio-astronomy/src/python/usrp_ra_receiver.py
index 22a30820b..cdc5b6e19 100755
--- a/gr-radio-astronomy/src/python/usrp_ra_receiver.py
+++ b/gr-radio-astronomy/src/python/usrp_ra_receiver.py
@@ -25,7 +25,7 @@ from gnuradio import usrp
import usrp_dbid
from gnuradio import eng_notation
from gnuradio.eng_option import eng_option
-from gnuradio.wxgui import stdgui, ra_fftsink, ra_stripchartsink, waterfallsink, form, slider
+from gnuradio.wxgui import stdgui, ra_fftsink, ra_stripchartsink, ra_waterfallsink, form, slider
from optparse import OptionParser
import wx
import sys
@@ -79,13 +79,25 @@ class app_flow_graph(stdgui.gui_flow_graph):
parser.add_option("-A", "--calib_coeff", type="eng_float", default=1.0, help="Calibration coefficient")
parser.add_option("-B", "--calib_offset", type="eng_float", default=0.0, help="Calibration coefficient")
parser.add_option("-Q", "--calib_eqn", default="x = x * 1.0", help="Calibration equation")
+ parser.add_option("-W", "--waterfall", action="store_true", default=False, help="Use Waterfall FFT display")
+ parser.add_option("-S", "--setimode", action="store_true", default=False, help="Enable SETI processing of spectral data")
+ parser.add_option("-T", "--setitimer", type="eng_float", default=15.0, help="Timer for computing doppler chirp for SETI analysis")
+ parser.add_option("-K", "--setik", type="eng_float", default=1.5, help="K value for SETI analysis")
(options, args) = parser.parse_args()
if len(args) != 0:
parser.print_help()
sys.exit(1)
self.show_debug_info = True
-
+ self.waterfall = options.waterfall
+ self.setimode = options.setimode
+ self.seticounter = 0
+ self.setitimer = int(options.setitimer)
+ self.setik = options.setik
+ self.hitcounter = 0
+ self.CHIRP_LOWER = 15
+ self.CHIRP_UPPER = 50
+
# Calibration coefficient and offset
self.calib_coeff = options.calib_coeff
self.calib_offset = options.calib_offset
@@ -134,12 +146,19 @@ class app_flow_graph(stdgui.gui_flow_graph):
# values. Used later by self.write_spectral_data() to write
# spectral data to datalogging files.
self.fft_outbuf = Numeric.zeros(options.fft_size, Numeric.Float64)
+ self.old_hits = Numeric.zeros(10, Numeric.Float64)
+ self.older_hits = Numeric.zeros(10, Numeric.Float64)
# Set up FFT display
- self.scope = ra_fftsink.ra_fft_sink_c (self, panel,
- fft_size=int(self.fft_size), sample_rate=input_rate,
- fft_rate=int(self.fft_rate), title="Spectral",
- ofunc=self.fft_outfunc, xydfunc=self.xydfunc)
+ if self.waterfall == False:
+ self.scope = ra_fftsink.ra_fft_sink_c (self, panel,
+ fft_size=int(self.fft_size), sample_rate=input_rate,
+ fft_rate=int(self.fft_rate), title="Spectral",
+ ofunc=self.fft_outfunc, xydfunc=self.xydfunc)
+ else:
+ self.scope = ra_waterfallsink.ra_waterfallsink_c (self, panel,
+ fft_size=int(self.fft_size), sample_rate=input_rate,
+ fft_rate=int(self.fft_rate), title="Spectral", ofunc=self.fft_outfunc, xydfunc=self.xydfunc)
# Set up ephemeris data
self.locality = ephem.Observer()
@@ -510,6 +529,9 @@ class app_flow_graph(stdgui.gui_flow_graph):
# Continuum detector value
sx = "%7.4f" % x
s = s + "\nDet: " + str(sx)
+ sx = "%2d" % self.hitcounter
+ sy = "%2d" % self.CHIRP_LOWER
+ s = s + "\nH: " + str(sx) + " Cl: " + str(sy)
self.myform['lmst_high'].set_value(s)
#
@@ -518,6 +540,9 @@ class app_flow_graph(stdgui.gui_flow_graph):
self.write_continuum_data(x,sidtime)
self.write_spectral_data(self.fft_outbuf,sidtime)
+ if self.setimode == True:
+ self.seti_analysis(self.fft_outbuf,sidtime)
+
def fft_outfunc(self,data,l):
self.fft_outbuf=data
@@ -599,6 +624,124 @@ class app_flow_graph(stdgui.gui_flow_graph):
return(data)
+ def seti_analysis(self,fftbuf,sidtime):
+ l = len(fftbuf)
+ x = 0
+ hits = []
+ if self.seticounter < self.setitimer:
+ self.seticounter = self.seticounter + 1
+ return
+ else:
+ self.seticounter = 0
+
+ # Run through FFT output buffer, computing standard deviation (Sigma)
+ avg = 0
+ # First compute average
+ for i in range(0,l):
+ avg = avg + fftbuf[i]
+ avg = avg / l
+
+ sigma = 0.0
+ # Then compute standard deviation (Sigma)
+ for i in range(0,l):
+ d = fftbuf[i] - avg
+ sigma = sigma + (d*d)
+
+ sigma = Numeric.sqrt(sigma/l)
+
+ #
+ # Snarfle through the FFT output buffer again, looking for
+ # outlying data points
+
+ start_f = self.observing - (self.bw/2)
+ current_f = start_f
+ f_incr = self.bw / l
+ l = len(fftbuf)
+ hit = -1
+
+ # -nyquist to DC
+ for i in range(l/2,l):
+ #
+ # If current FFT buffer has an item that exceeds the specified
+ # sigma
+ #
+ if ((fftbuf[i] - avg) > (self.setik * sigma)):
+ hits.append(current_f)
+ current_f = current_f + f_incr
+
+ # DC to nyquist
+ for i in range(0,l/2):
+ #
+ # If current FFT buffer has an item that exceeds the specified
+ # sigma
+ #
+ if ((fftbuf[i] - avg) > (self.setik * sigma)):
+ hits.append(current_f)
+ current_f = current_f + f_incr
+
+ if (len(hits) <= 0):
+ return
+
+ if (len(hits) > len(self.old_hits)*2):
+ return
+
+ #
+ #
+ # Calculate chirp limits from first principles
+ #
+ #
+ earth_diam = 12500
+ earth_circ = earth_diam * 3.14159
+ surface_speed = earth_circ / 24
+ surface_speed = surface_speed / 3600
+
+ c1 = (surface_speed/2) / 299792.0
+ c2 = (surface_speed*5) / 299792.0
+
+ self.CHIRP_LOWER = (c1 * self.observing) * self.setitimer
+ self.CHIRP_UPPER = (c2 * self.observing) * self.setitimer
+
+ #
+ # Run through all three hit buffers, computing difference between
+ # frequencies found there, if they're all within the chirp limits
+ # declare a good hit
+ #
+ good_hit = 0
+ for i in range(0,min(len(hits),len(self.old_hits))):
+ f_diff = abs(self.old_hits[i] - hits[i])
+ f_diff2 = abs(self.older_hits[i] - self.old_hits[i])
+ # If frequency difference is within range, we have a hit
+ if (f_diff >= self.CHIRP_LOWER and f_diff <= self.CHIRP_UPPER):
+ if (f_diff2 >= self.CHIRP_LOWER and f_diff <= self.CHIRP_UPPER):
+ good_hit = 1
+ self.hitcounter = self.hitcounter + 1
+ break
+
+ if (good_hit != 0):
+ self.write_hits(hits,sidtime)
+
+ # Save old hits
+ for i in range(0,len(self.older_hits)):
+ self.older_hits[i] = self.old_hits[i]
+ self.old_hits[i] = 0
+ for i in range(0,min(len(hits),len(self.old_hits))):
+ self.old_hits[i] = hits[i]
+
+ return
+
+ def write_hits(self,hits,sidtime):
+ # Create localtime structure for producing filename
+ foo = time.localtime()
+ pfx = self.prefix
+ filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
+ foo.tm_mon, foo.tm_mday, foo.tm_hour)
+
+ # Open the data file, appending
+ hits_file = open (filenamestr+".seti","a")
+ hits_file.write(str(ephem.hours(sidtime))+" "+str(hits)+"\n")
+ hits_file.close()
+ return
+
def xydfunc(self,xyv):
magn = int(Numeric.log10(self.observing))
if (magn == 6 or magn == 7 or magn == 8):