-- Copyright (C) 2002 Morgan Kaufmann Publishers, Inc -- This file is part of VESTs (Vhdl tESTs). -- VESTs is free software; you can redistribute it and/or modify it -- under the terms of the GNU General Public License as published by the -- Free Software Foundation; either version 2 of the License, or (at -- your option) any later version. -- VESTs is distributed in the hope that it will be useful, but WITHOUT -- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for more details. -- You should have received a copy of the GNU General Public License -- along with VESTs; if not, write to the Free Software Foundation, -- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -- not in book library ieee_proposed; use ieee_proposed.electrical_systems.all; entity resistor is generic ( res : resistance ); port ( terminal p1, p2 : electrical ); end entity resistor; architecture ideal of resistor is quantity v across i through p1 to p2; begin v == i * res; end architecture ideal; library ieee_proposed; use ieee_proposed.electrical_systems.all; entity capacitor is generic ( cap : resistance ); port ( terminal p1, p2 : electrical ); end entity capacitor; architecture ideal of capacitor is quantity v across i through p1 to p2; begin i == cap * v'dot; end architecture ideal; -- end not in book library ieee; use ieee.math_real.all; library ieee_proposed; use ieee_proposed.electrical_systems.all; entity lowpass is generic ( gain : real := 1.0; -- gain for 'dot, 'ltf, and 'ztf fp : real := 10.0; -- pole in Hz for 'dot, 'ltf, and 'ztf Fsmp : real := 10.0e3 ); -- sample frequency for ztf port ( terminal input: electrical; terminal output: electrical ); end entity lowpass; ---------------------------------------------------------------- architecture RC of lowpass is constant cap : real := 1.0e-6; constant res : real := 1.0 / (math_2_pi * cap * fp); begin assert false report "gain is ignored in architecture RC" severity note; assert false report "Fsmp is not used in architecture RC" severity note; R : entity work.resistor(ideal) generic map( res => res ) port map( p1 => input, p2 => output ); C : entity work.capacitor(ideal) generic map( cap => cap ) port map( p1 => output, p2 => electrical_ref ); end architecture RC; ---------------------------------------------------------------- architecture dot of lowpass is quantity vin across input to electrical_ref; quantity vout across iout through output to electrical_ref; constant wp : real := fp * math_2_pi; -- pole in rad/s constant tp : real := 1.0 / wp; -- time constant begin assert false report "Fsmp is not used in architecture dot" severity note; vin == (vout + tp * vout'dot) / gain; end architecture dot; ---------------------------------------------------------------- architecture ltf of lowpass is quantity vin across input to electrical_ref; quantity vout across iout through output to electrical_ref; constant wp : real := fp * math_2_pi; -- pole in rad/s constant num : real_vector := (0 => wp); constant den : real_vector := (wp, 1.0); begin assert false report "Fsmp is not used in architecture ltf" severity note; vout == gain*vin'ltf(num, den); end architecture ltf; ---------------------------------------------------------------- architecture z_minus_1 of lowpass is quantity vin across input to electrical_ref; quantity vout across iout through output to electrical_ref; quantity vin_sampled : real; -- sampled input quantity vin_zm1, vout_zm1 : real; -- z**-1 constant Tsmp : real := 1.0 / Fsmp; -- sample period constant wp : real := fp * math_2_pi; -- pole in rad/s constant n0 : real := Tsmp * wp; -- z0 numerator coefficient constant n1 : real := Tsmp * wp; -- z-1 numerator coefficient constant d0 : real := Tsmp * wp + 2.0; -- z0 denominator coefficient constant d1 : real := Tsmp * wp - 2.0; -- z-1 denominator coefficient begin vin_sampled == gain*vin'zoh(Tsmp); vin_zm1 == vin_sampled'delayed(Tsmp); vout_zm1 == vout'delayed(Tsmp); vout == vin_sampled * n0 / d0 + n1 * vin_zm1 / d0 - d1 * vout_zm1 / d0; end z_minus_1; ---------------------------------------------------------------- architecture ztf of lowpass is quantity vin across input to electrical_ref; quantity vout across iout through output to electrical_ref; constant Tsmp : real := 1.0 / Fsmp; -- sample period constant wp : real := fp * math_2_pi; -- pole in rad/s constant n0 : real := Tsmp * wp; -- z0 numerator coefficient constant n1 : real := Tsmp * wp; -- z-1 numerator coefficient constant d0 : real := Tsmp * wp + 2.0; -- z0 denominator coefficient constant d1 : real := Tsmp * wp - 2.0; -- z-1 denominator coefficient constant num : real_vector := (n0, n1); constant den : real_vector := (d0, d1); begin vout == gain*vin'ztf(num, den, Tsmp); end ztf;