-- Evaluation of static expressions. -- Copyright (C) 2002, 2003, 2004, 2005 Tristan Gingold -- -- GHDL is free software; you can redistribute it and/or modify it under -- the terms of the GNU General Public License as published by the Free -- Software Foundation; either version 2, or (at your option) any later -- version. -- -- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY -- WARRANTY; without even the implied warranty of MERCHANTABILITY or -- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- for more details. -- -- You should have received a copy of the GNU General Public License -- along with GHDL; see the file COPYING. If not, write to the Free -- Software Foundation, 59 Temple Place - Suite 330, Boston, MA -- 02111-1307, USA. with Ada.Unchecked_Deallocation; with Errorout; use Errorout; with Name_Table; use Name_Table; with Str_Table; with Iirs_Utils; use Iirs_Utils; with Std_Package; use Std_Package; with Flags; use Flags; with Std_Names; with Ada.Characters.Handling; package body Evaluation is function Eval_Enum_To_String (Lit : Iir; Orig : Iir) return Iir; function Eval_Integer_Image (Val : Iir_Int64; Orig : Iir) return Iir; function Get_Physical_Value (Expr : Iir) return Iir_Int64 is pragma Unsuppress (Overflow_Check); Kind : constant Iir_Kind := Get_Kind (Expr); Unit : Iir; begin case Kind is when Iir_Kind_Physical_Int_Literal | Iir_Kind_Physical_Fp_Literal => -- Extract Unit. Unit := Get_Physical_Unit_Value (Get_Named_Entity (Get_Unit_Name (Expr))); case Kind is when Iir_Kind_Physical_Int_Literal => return Get_Value (Expr) * Get_Value (Unit); when Iir_Kind_Physical_Fp_Literal => return Iir_Int64 (Get_Fp_Value (Expr) * Iir_Fp64 (Get_Value (Unit))); when others => raise Program_Error; end case; when Iir_Kind_Unit_Declaration => return Get_Value (Get_Physical_Unit_Value (Expr)); when others => Error_Kind ("get_physical_value", Expr); end case; end Get_Physical_Value; function Build_Integer (Val : Iir_Int64; Origin : Iir) return Iir_Integer_Literal is Res : Iir_Integer_Literal; begin Res := Create_Iir (Iir_Kind_Integer_Literal); Location_Copy (Res, Origin); Set_Value (Res, Val); Set_Type (Res, Get_Type (Origin)); Set_Literal_Origin (Res, Origin); Set_Expr_Staticness (Res, Locally); return Res; end Build_Integer; function Build_Floating (Val : Iir_Fp64; Origin : Iir) return Iir_Floating_Point_Literal is Res : Iir_Floating_Point_Literal; begin Res := Create_Iir (Iir_Kind_Floating_Point_Literal); Location_Copy (Res, Origin); Set_Fp_Value (Res, Val); Set_Type (Res, Get_Type (Origin)); Set_Literal_Origin (Res, Origin); Set_Expr_Staticness (Res, Locally); return Res; end Build_Floating; function Build_Enumeration_Constant (Val : Iir_Index32; Origin : Iir) return Iir_Enumeration_Literal is Enum_Type : constant Iir := Get_Base_Type (Get_Type (Origin)); Enum_List : constant Iir_List := Get_Enumeration_Literal_List (Enum_Type); Lit : constant Iir_Enumeration_Literal := Get_Nth_Element (Enum_List, Integer (Val)); Res : Iir_Enumeration_Literal; begin Res := Copy_Enumeration_Literal (Lit); Location_Copy (Res, Origin); Set_Literal_Origin (Res, Origin); return Res; end Build_Enumeration_Constant; function Build_Physical (Val : Iir_Int64; Origin : Iir) return Iir_Physical_Int_Literal is Res : Iir_Physical_Int_Literal; Unit_Name : Iir; begin Res := Create_Iir (Iir_Kind_Physical_Int_Literal); Location_Copy (Res, Origin); Unit_Name := Get_Primary_Unit_Name (Get_Base_Type (Get_Type (Origin))); Set_Unit_Name (Res, Unit_Name); Set_Value (Res, Val); Set_Type (Res, Get_Type (Origin)); Set_Literal_Origin (Res, Origin); Set_Expr_Staticness (Res, Locally); return Res; end Build_Physical; function Build_Discrete (Val : Iir_Int64; Origin : Iir) return Iir is begin case Get_Kind (Get_Type (Origin)) is when Iir_Kind_Enumeration_Type_Definition | Iir_Kind_Enumeration_Subtype_Definition => return Build_Enumeration_Constant (Iir_Index32 (Val), Origin); when Iir_Kind_Integer_Type_Definition | Iir_Kind_Integer_Subtype_Definition => return Build_Integer (Val, Origin); when others => Error_Kind ("build_discrete", Get_Type (Origin)); end case; end Build_Discrete; function Build_String (Val : String8_Id; Len : Nat32; Origin : Iir) return Iir is Res : Iir; begin Res := Create_Iir (Iir_Kind_String_Literal8); Location_Copy (Res, Origin); Set_String8_Id (Res, Val); Set_String_Length (Res, Len); Set_Type (Res, Get_Type (Origin)); Set_Literal_Origin (Res, Origin); Set_Expr_Staticness (Res, Locally); return Res; end Build_String; function Build_Simple_Aggregate (El_List : Iir_List; Origin : Iir; Stype : Iir) return Iir_Simple_Aggregate is Res : Iir_Simple_Aggregate; begin Res := Create_Iir (Iir_Kind_Simple_Aggregate); Location_Copy (Res, Origin); Set_Simple_Aggregate_List (Res, El_List); Set_Type (Res, Stype); Set_Literal_Origin (Res, Origin); Set_Expr_Staticness (Res, Locally); Set_Literal_Subtype (Res, Stype); return Res; end Build_Simple_Aggregate; function Build_Overflow (Origin : Iir; Expr_Type : Iir) return Iir is Res : Iir; begin Res := Create_Iir (Iir_Kind_Overflow_Literal); Location_Copy (Res, Origin); Set_Type (Res, Expr_Type); Set_Literal_Origin (Res, Origin); Set_Expr_Staticness (Res, Locally); return Res; end Build_Overflow; function Build_Overflow (Origin : Iir) return Iir is begin return Build_Overflow (Origin, Get_Type (Origin)); end Build_Overflow; function Build_Constant (Val : Iir; Origin : Iir) return Iir is Res : Iir; begin -- Note: this must work for any literals, because it may be used to -- replace a locally static constant by its initial value. case Get_Kind (Val) is when Iir_Kind_Integer_Literal => Res := Create_Iir (Iir_Kind_Integer_Literal); Set_Value (Res, Get_Value (Val)); when Iir_Kind_Floating_Point_Literal => Res := Create_Iir (Iir_Kind_Floating_Point_Literal); Set_Fp_Value (Res, Get_Fp_Value (Val)); when Iir_Kind_Enumeration_Literal => return Build_Enumeration_Constant (Iir_Index32 (Get_Enum_Pos (Val)), Origin); when Iir_Kind_Physical_Int_Literal | Iir_Kind_Physical_Fp_Literal => Res := Create_Iir (Iir_Kind_Physical_Int_Literal); Set_Unit_Name (Res, Get_Primary_Unit_Name (Get_Base_Type (Get_Type (Origin)))); Set_Value (Res, Get_Physical_Value (Val)); when Iir_Kind_Unit_Declaration => Res := Create_Iir (Iir_Kind_Physical_Int_Literal); Set_Value (Res, Get_Physical_Value (Val)); Set_Unit_Name (Res, Get_Primary_Unit_Name (Get_Type (Val))); when Iir_Kind_String_Literal8 => Res := Create_Iir (Iir_Kind_String_Literal8); Set_String8_Id (Res, Get_String8_Id (Val)); Set_String_Length (Res, Get_String_Length (Val)); when Iir_Kind_Simple_Aggregate => Res := Create_Iir (Iir_Kind_Simple_Aggregate); Set_Simple_Aggregate_List (Res, Get_Simple_Aggregate_List (Val)); Set_Literal_Subtype (Res, Get_Type (Origin)); when Iir_Kind_Overflow_Literal => Res := Create_Iir (Iir_Kind_Overflow_Literal); when others => Error_Kind ("build_constant", Val); end case; Location_Copy (Res, Origin); Set_Type (Res, Get_Type (Origin)); Set_Literal_Origin (Res, Origin); Set_Expr_Staticness (Res, Locally); return Res; end Build_Constant; -- FIXME: origin ? function Build_Boolean (Cond : Boolean) return Iir is begin if Cond then return Boolean_True; else return Boolean_False; end if; end Build_Boolean; function Build_Enumeration (Val : Iir_Index32; Origin : Iir) return Iir_Enumeration_Literal is Enum_Type : constant Iir := Get_Base_Type (Get_Type (Origin)); Enum_List : constant Iir_List := Get_Enumeration_Literal_List (Enum_Type); begin return Get_Nth_Element (Enum_List, Integer (Val)); end Build_Enumeration; function Build_Enumeration (Val : Boolean; Origin : Iir) return Iir_Enumeration_Literal is Enum_Type : constant Iir := Get_Base_Type (Get_Type (Origin)); Enum_List : constant Iir_List := Get_Enumeration_Literal_List (Enum_Type); begin return Get_Nth_Element (Enum_List, Boolean'Pos (Val)); end Build_Enumeration; function Build_Constant_Range (Range_Expr : Iir; Origin : Iir) return Iir is Res : Iir; begin Res := Create_Iir (Iir_Kind_Range_Expression); Location_Copy (Res, Origin); Set_Type (Res, Get_Type (Range_Expr)); Set_Left_Limit (Res, Get_Left_Limit (Range_Expr)); Set_Right_Limit (Res, Get_Right_Limit (Range_Expr)); Set_Direction (Res, Get_Direction (Range_Expr)); Set_Range_Origin (Res, Origin); Set_Expr_Staticness (Res, Locally); return Res; end Build_Constant_Range; function Build_Extreme_Value (Is_Pos : Boolean; Origin : Iir) return Iir is Orig_Type : constant Iir := Get_Base_Type (Get_Type (Origin)); begin case Get_Kind (Orig_Type) is when Iir_Kind_Integer_Type_Definition => if Is_Pos then return Build_Integer (Iir_Int64'Last, Origin); else return Build_Integer (Iir_Int64'First, Origin); end if; when others => Error_Kind ("build_extreme_value", Orig_Type); end case; end Build_Extreme_Value; -- A_RANGE is a range expression, whose type, location, expr_staticness, -- left_limit and direction are set. -- Type of A_RANGE must have a range_constraint. -- Set the right limit of A_RANGE from LEN. procedure Set_Right_Limit_By_Length (A_Range : Iir; Len : Iir_Int64) is Left, Right : Iir; Pos : Iir_Int64; A_Type : Iir; begin if Get_Expr_Staticness (A_Range) /= Locally then raise Internal_Error; end if; A_Type := Get_Type (A_Range); Left := Get_Left_Limit (A_Range); Pos := Eval_Pos (Left); case Get_Direction (A_Range) is when Iir_To => Pos := Pos + Len -1; when Iir_Downto => Pos := Pos - Len + 1; end case; if Len > 0 and then not Eval_Int_In_Range (Pos, Get_Range_Constraint (A_Type)) then Error_Msg_Sem ("range length is beyond subtype length", A_Range); Right := Left; else -- FIXME: what about nul range? Right := Build_Discrete (Pos, A_Range); Set_Literal_Origin (Right, Null_Iir); end if; Set_Right_Limit (A_Range, Right); end Set_Right_Limit_By_Length; -- Create a range of type A_TYPE whose length is LEN. -- Note: only two nodes are created: -- * the range_expression (node returned) -- * the right bound -- The left bound *IS NOT* created, but points to the left bound of A_TYPE. function Create_Range_By_Length (A_Type : Iir; Len : Iir_Int64; Loc : Location_Type) return Iir is Index_Constraint : Iir; Constraint : Iir; begin -- The left limit must be locally static in order to compute the right -- limit. pragma Assert (Get_Type_Staticness (A_Type) = Locally); Index_Constraint := Get_Range_Constraint (A_Type); Constraint := Create_Iir (Iir_Kind_Range_Expression); Set_Location (Constraint, Loc); Set_Expr_Staticness (Constraint, Locally); Set_Type (Constraint, A_Type); Set_Left_Limit (Constraint, Get_Left_Limit (Index_Constraint)); Set_Direction (Constraint, Get_Direction (Index_Constraint)); Set_Right_Limit_By_Length (Constraint, Len); return Constraint; end Create_Range_By_Length; function Create_Range_Subtype_From_Type (A_Type : Iir; Loc : Location_Type) return Iir is Res : Iir; begin pragma Assert (Get_Type_Staticness (A_Type) = Locally); case Get_Kind (A_Type) is when Iir_Kind_Enumeration_Type_Definition => Res := Create_Iir (Iir_Kind_Enumeration_Subtype_Definition); when Iir_Kind_Integer_Subtype_Definition | Iir_Kind_Enumeration_Subtype_Definition => Res := Create_Iir (Get_Kind (A_Type)); when others => Error_Kind ("create_range_subtype_by_length", A_Type); end case; Set_Location (Res, Loc); Set_Base_Type (Res, Get_Base_Type (A_Type)); Set_Type_Staticness (Res, Locally); return Res; end Create_Range_Subtype_From_Type; -- Create a subtype of A_TYPE whose length is LEN. -- This is used to create subtypes for strings or aggregates. function Create_Range_Subtype_By_Length (A_Type : Iir; Len : Iir_Int64; Loc : Location_Type) return Iir is Res : Iir; begin Res := Create_Range_Subtype_From_Type (A_Type, Loc); Set_Range_Constraint (Res, Create_Range_By_Length (A_Type, Len, Loc)); return Res; end Create_Range_Subtype_By_Length; function Create_Unidim_Array_From_Index (Base_Type : Iir; Index_Type : Iir; Loc : Iir) return Iir_Array_Subtype_Definition is Res : Iir_Array_Subtype_Definition; begin Res := Create_Array_Subtype (Base_Type, Get_Location (Loc)); Append_Element (Get_Index_Subtype_List (Res), Index_Type); Set_Type_Staticness (Res, Min (Get_Type_Staticness (Res), Get_Type_Staticness (Index_Type))); Set_Constraint_State (Res, Fully_Constrained); Set_Index_Constraint_Flag (Res, True); return Res; end Create_Unidim_Array_From_Index; function Create_Unidim_Array_By_Length (Base_Type : Iir; Len : Iir_Int64; Loc : Iir) return Iir_Array_Subtype_Definition is Index_Type : constant Iir := Get_Index_Type (Base_Type, 0); N_Index_Type : Iir; begin N_Index_Type := Create_Range_Subtype_By_Length (Index_Type, Len, Get_Location (Loc)); return Create_Unidim_Array_From_Index (Base_Type, N_Index_Type, Loc); end Create_Unidim_Array_By_Length; procedure Free_Eval_Static_Expr (Res : Iir; Orig : Iir) is begin if Res /= Orig and then Get_Literal_Origin (Res) = Orig then Free_Iir (Res); end if; end Free_Eval_Static_Expr; -- Free the result RES of Eval_String_Literal called with ORIG, if created. procedure Free_Eval_String_Literal (Res : Iir; Orig : Iir) is L : Iir_List; begin if Res /= Orig then L := Get_Simple_Aggregate_List (Res); Destroy_Iir_List (L); Free_Iir (Res); end if; end Free_Eval_String_Literal; function Eval_String_Literal (Str : Iir) return Iir is Len : Nat32; begin case Get_Kind (Str) is when Iir_Kind_String_Literal8 => declare Element_Type : Iir; Literal_List : Iir_List; Lit : Iir; List : Iir_List; Id : String8_Id; begin Element_Type := Get_Base_Type (Get_Element_Subtype (Get_Base_Type (Get_Type (Str)))); Literal_List := Get_Enumeration_Literal_List (Element_Type); List := Create_Iir_List; Id := Get_String8_Id (Str); Len := Get_String_Length (Str); for I in 1 .. Len loop Lit := Get_Nth_Element (Literal_List, Natural (Str_Table.Element_String8 (Id, I))); Append_Element (List, Lit); end loop; return Build_Simple_Aggregate (List, Str, Get_Type (Str)); end; when Iir_Kind_Simple_Aggregate => return Str; when others => Error_Kind ("eval_string_literal", Str); end case; end Eval_String_Literal; function Eval_Monadic_Operator (Orig : Iir; Operand : Iir) return Iir is pragma Unsuppress (Overflow_Check); Func : Iir_Predefined_Functions; begin if Get_Kind (Operand) = Iir_Kind_Overflow_Literal then -- Propagate overflow. return Build_Overflow (Orig); end if; Func := Get_Implicit_Definition (Get_Implementation (Orig)); case Func is when Iir_Predefined_Integer_Negation => return Build_Integer (-Get_Value (Operand), Orig); when Iir_Predefined_Integer_Identity => return Build_Integer (Get_Value (Operand), Orig); when Iir_Predefined_Integer_Absolute => return Build_Integer (abs Get_Value (Operand), Orig); when Iir_Predefined_Floating_Negation => return Build_Floating (-Get_Fp_Value (Operand), Orig); when Iir_Predefined_Floating_Identity => return Build_Floating (Get_Fp_Value (Operand), Orig); when Iir_Predefined_Floating_Absolute => return Build_Floating (abs Get_Fp_Value (Operand), Orig); when Iir_Predefined_Physical_Negation => return Build_Physical (-Get_Physical_Value (Operand), Orig); when Iir_Predefined_Physical_Identity => return Build_Physical (Get_Physical_Value (Operand), Orig); when Iir_Predefined_Physical_Absolute => return Build_Physical (abs Get_Physical_Value (Operand), Orig); when Iir_Predefined_Boolean_Not | Iir_Predefined_Bit_Not => return Build_Enumeration (Get_Enum_Pos (Operand) = 0, Orig); when Iir_Predefined_TF_Array_Not => declare O_List : Iir_List; R_List : Iir_List; El : Iir; Lit : Iir; begin O_List := Get_Simple_Aggregate_List (Eval_String_Literal (Operand)); R_List := Create_Iir_List; for I in Natural loop El := Get_Nth_Element (O_List, I); exit when El = Null_Iir; case Get_Enum_Pos (El) is when 0 => Lit := Bit_1; when 1 => Lit := Bit_0; when others => raise Internal_Error; end case; Append_Element (R_List, Lit); end loop; return Build_Simple_Aggregate (R_List, Orig, Get_Type (Operand)); end; when Iir_Predefined_Enum_To_String => return Eval_Enum_To_String (Operand, Orig); when Iir_Predefined_Integer_To_String => return Eval_Integer_Image (Get_Value (Operand), Orig); when others => Error_Internal (Orig, "eval_monadic_operator: " & Iir_Predefined_Functions'Image (Func)); end case; exception when Constraint_Error => -- Can happen for absolute. Warning_Msg_Sem ("arithmetic overflow in static expression", Orig); return Build_Overflow (Orig); end Eval_Monadic_Operator; function Eval_Dyadic_Bit_Array_Operator (Expr : Iir; Left, Right : Iir; Func : Iir_Predefined_Dyadic_TF_Array_Functions) return Iir is use Str_Table; L_Str : constant String8_Id := Get_String8_Id (Left); R_Str : constant String8_Id := Get_String8_Id (Right); Len : Nat32; Id : String8_Id; Res : Iir; begin Len := Get_String_Length (Left); if Len /= Get_String_Length (Right) then Warning_Msg_Sem ("length of left and right operands mismatch", Expr); return Build_Overflow (Expr); else Id := Create_String8; case Func is when Iir_Predefined_TF_Array_And => for I in 1 .. Len loop case Element_String8 (L_Str, I) is when 0 => Append_String8 (0); when 1 => Append_String8 (Element_String8 (R_Str, I)); when others => raise Internal_Error; end case; end loop; when Iir_Predefined_TF_Array_Nand => for I in 1 .. Len loop case Element_String8 (L_Str, I) is when 0 => Append_String8 (1); when 1 => case Element_String8 (R_Str, I) is when 0 => Append_String8 (1); when 1 => Append_String8 (0); when others => raise Internal_Error; end case; when others => raise Internal_Error; end case; end loop; when Iir_Predefined_TF_Array_Or => for I in 1 .. Len loop case Element_String8 (L_Str, I) is when 1 => Append_String8 (1); when 0 => Append_String8 (Element_String8 (R_Str, I)); when others => raise Internal_Error; end case; end loop; when Iir_Predefined_TF_Array_Nor => for I in 1 .. Len loop case Element_String8 (L_Str, I) is when 1 => Append_String8 (0); when 0 => case Element_String8 (R_Str, I) is when 0 => Append_String8 (1); when 1 => Append_String8 (0); when others => raise Internal_Error; end case; when others => raise Internal_Error; end case; end loop; when Iir_Predefined_TF_Array_Xor => for I in 1 .. Len loop case Element_String8 (L_Str, I) is when 1 => case Element_String8 (R_Str, I) is when 0 => Append_String8 (1); when 1 => Append_String8 (0); when others => raise Internal_Error; end case; when 0 => Append_String8 (Element_String8 (R_Str, I)); when others => raise Internal_Error; end case; end loop; when others => Error_Internal (Expr, "eval_dyadic_bit_array_functions: " & Iir_Predefined_Functions'Image (Func)); end case; Res := Build_String (Id, Len, Expr); -- The unconstrained type is replaced by the constrained one. Set_Type (Res, Get_Type (Left)); return Res; end if; end Eval_Dyadic_Bit_Array_Operator; -- Return TRUE if VAL /= 0. function Check_Integer_Division_By_Zero (Expr : Iir; Val : Iir) return Boolean is begin if Get_Value (Val) = 0 then Warning_Msg_Sem ("division by 0", Expr); return False; else return True; end if; end Check_Integer_Division_By_Zero; function Eval_Shift_Operator (Left, Right : Iir; Origin : Iir; Func : Iir_Predefined_Shift_Functions) return Iir is Count : Iir_Int64; Cnt : Natural; Len : Natural; Arr_List : Iir_List; Res_List : Iir_List; Dir_Left : Boolean; E : Iir; begin Count := Get_Value (Right); Arr_List := Get_Simple_Aggregate_List (Left); Len := Get_Nbr_Elements (Arr_List); -- LRM93 7.2.3 -- That is, if R is 0 or if L is a null array, the return value is L. if Count = 0 or Len = 0 then return Build_Simple_Aggregate (Arr_List, Origin, Get_Type (Left)); end if; case Func is when Iir_Predefined_Array_Sll | Iir_Predefined_Array_Sla | Iir_Predefined_Array_Rol => Dir_Left := True; when Iir_Predefined_Array_Srl | Iir_Predefined_Array_Sra | Iir_Predefined_Array_Ror => Dir_Left := False; end case; if Count < 0 then Cnt := Natural (-Count); Dir_Left := not Dir_Left; else Cnt := Natural (Count); end if; case Func is when Iir_Predefined_Array_Sll | Iir_Predefined_Array_Srl => declare Enum_List : Iir_List; begin Enum_List := Get_Enumeration_Literal_List (Get_Base_Type (Get_Element_Subtype (Get_Type (Left)))); E := Get_Nth_Element (Enum_List, 0); end; when Iir_Predefined_Array_Sla | Iir_Predefined_Array_Sra => if Dir_Left then E := Get_Nth_Element (Arr_List, Len - 1); else E := Get_Nth_Element (Arr_List, 0); end if; when Iir_Predefined_Array_Rol | Iir_Predefined_Array_Ror => Cnt := Cnt mod Len; if not Dir_Left then Cnt := (Len - Cnt) mod Len; end if; end case; Res_List := Create_Iir_List; case Func is when Iir_Predefined_Array_Sll | Iir_Predefined_Array_Srl | Iir_Predefined_Array_Sla | Iir_Predefined_Array_Sra => if Dir_Left then if Cnt < Len then for I in Cnt .. Len - 1 loop Append_Element (Res_List, Get_Nth_Element (Arr_List, I)); end loop; else Cnt := Len; end if; for I in 0 .. Cnt - 1 loop Append_Element (Res_List, E); end loop; else if Cnt > Len then Cnt := Len; end if; for I in 0 .. Cnt - 1 loop Append_Element (Res_List, E); end loop; for I in Cnt .. Len - 1 loop Append_Element (Res_List, Get_Nth_Element (Arr_List, I - Cnt)); end loop; end if; when Iir_Predefined_Array_Rol | Iir_Predefined_Array_Ror => for I in 1 .. Len loop Append_Element (Res_List, Get_Nth_Element (Arr_List, Cnt)); Cnt := Cnt + 1; if Cnt = Len then Cnt := 0; end if; end loop; end case; return Build_Simple_Aggregate (Res_List, Origin, Get_Type (Left)); end Eval_Shift_Operator; -- Note: operands must be locally static. function Eval_Concatenation (Left, Right : Iir; Orig : Iir; Func : Iir_Predefined_Concat_Functions) return Iir is Res_List : Iir_List; L : Natural; Res_Type : Iir; Origin_Type : Iir; Left_Aggr, Right_Aggr : Iir; Left_List, Right_List : Iir_List; Left_Len : Natural; begin Res_List := Create_Iir_List; -- Do the concatenation. -- Left: case Func is when Iir_Predefined_Element_Array_Concat | Iir_Predefined_Element_Element_Concat => Append_Element (Res_List, Left); Left_Len := 1; when Iir_Predefined_Array_Element_Concat | Iir_Predefined_Array_Array_Concat => Left_Aggr := Eval_String_Literal (Left); Left_List := Get_Simple_Aggregate_List (Left_Aggr); Left_Len := Get_Nbr_Elements (Left_List); for I in 0 .. Left_Len - 1 loop Append_Element (Res_List, Get_Nth_Element (Left_List, I)); end loop; Free_Eval_String_Literal (Left_Aggr, Left); end case; -- Right: case Func is when Iir_Predefined_Array_Element_Concat | Iir_Predefined_Element_Element_Concat => Append_Element (Res_List, Right); when Iir_Predefined_Element_Array_Concat | Iir_Predefined_Array_Array_Concat => Right_Aggr := Eval_String_Literal (Right); Right_List := Get_Simple_Aggregate_List (Right_Aggr); L := Get_Nbr_Elements (Right_List); for I in 0 .. L - 1 loop Append_Element (Res_List, Get_Nth_Element (Right_List, I)); end loop; Free_Eval_String_Literal (Right_Aggr, Right); end case; L := Get_Nbr_Elements (Res_List); -- Compute subtype... Origin_Type := Get_Type (Orig); Res_Type := Null_Iir; if Func = Iir_Predefined_Array_Array_Concat and then Left_Len = 0 then if Flags.Vhdl_Std = Vhdl_87 then -- LRM87 7.2.3 -- [...], unless the left operand is a null array, in which case -- the result of the concatenation is the right operand. Res_Type := Get_Type (Right); else -- LRM93 7.2.4 -- If both operands are null arrays, then the result of the -- concatenation is the right operand. if Get_Nbr_Elements (Right_List) = 0 then Res_Type := Get_Type (Right); end if; end if; end if; if Res_Type = Null_Iir then if Flags.Vhdl_Std = Vhdl_87 and then (Func = Iir_Predefined_Array_Array_Concat or Func = Iir_Predefined_Array_Element_Concat) then -- LRM87 7.2.3 -- The left bound of the result is the left operand, [...] -- -- LRM87 7.2.3 -- The direction of the result is the direction of the left -- operand, [...] declare Left_Index : constant Iir := Get_Index_Type (Get_Type (Left), 0); Left_Range : constant Iir := Get_Range_Constraint (Left_Index); Ret_Type : constant Iir := Get_Return_Type (Get_Implementation (Orig)); A_Range : Iir; Index_Type : Iir; begin A_Range := Create_Iir (Iir_Kind_Range_Expression); Set_Type (A_Range, Get_Index_Type (Ret_Type, 0)); Set_Expr_Staticness (A_Range, Locally); Set_Left_Limit (A_Range, Get_Left_Limit (Left_Range)); Set_Direction (A_Range, Get_Direction (Left_Range)); Location_Copy (A_Range, Orig); Set_Right_Limit_By_Length (A_Range, Iir_Int64 (L)); Index_Type := Create_Range_Subtype_From_Type (Left_Index, Get_Location (Orig)); Set_Range_Constraint (Index_Type, A_Range); Res_Type := Create_Unidim_Array_From_Index (Origin_Type, Index_Type, Orig); end; else -- LRM93 7.2.4 -- Otherwise, the direction and bounds of the result are -- determined as follows: let S be the index subtype of the base -- type of the result. The direction of the result of the -- concatenation is the direction of S, and the left bound of the -- result is S'LEFT. Res_Type := Create_Unidim_Array_By_Length (Origin_Type, Iir_Int64 (L), Orig); end if; end if; -- FIXME: this is not necessarily a string, it may be an aggregate if -- element type is not a character type. return Build_Simple_Aggregate (Res_List, Orig, Res_Type); end Eval_Concatenation; function Eval_Discrete_Compare (Left, Right : Iir) return Compare_Type is Ltype : constant Iir := Get_Base_Type (Get_Type (Left)); begin pragma Assert (Get_Kind (Ltype) = Get_Kind (Get_Base_Type (Get_Type (Right)))); case Get_Kind (Ltype) is when Iir_Kind_Enumeration_Type_Definition => declare L_Pos : constant Iir_Int32 := Get_Enum_Pos (Left); R_Pos : constant Iir_Int32 := Get_Enum_Pos (Right); begin if L_Pos = R_Pos then return Compare_Eq; else if L_Pos < R_Pos then return Compare_Lt; else return Compare_Gt; end if; end if; end; when Iir_Kind_Integer_Type_Definition => declare L_Val : constant Iir_Int64 := Get_Value (Left); R_Val : constant Iir_Int64 := Get_Value (Right); begin if L_Val = R_Val then return Compare_Eq; else if L_Val < R_Val then return Compare_Lt; else return Compare_Gt; end if; end if; end; when others => Error_Kind ("eval_discrete_compare", Ltype); end case; end Eval_Discrete_Compare; function Eval_Array_Compare (Left, Right : Iir) return Compare_Type is begin if Get_Kind (Left) = Iir_Kind_String_Literal8 and then Get_Kind (Right) = Iir_Kind_String_Literal8 then -- Common case: both parameters are strings. declare L_Id : constant String8_Id := Get_String8_Id (Left); R_Id : constant String8_Id := Get_String8_Id (Right); L_Len : constant Int32 := Get_String_Length (Left); R_Len : constant Int32 := Get_String_Length (Right); L_El, R_El : Nat8; P : Nat32; begin P := 1; while P <= L_Len and P <= R_Len loop L_El := Str_Table.Element_String8 (L_Id, P); R_El := Str_Table.Element_String8 (R_Id, P); if L_El /= R_El then if L_El < R_El then return Compare_Lt; else return Compare_Gt; end if; end if; P := P + 1; end loop; if L_Len = R_Len then return Compare_Eq; elsif L_Len < R_Len then return Compare_Lt; else return Compare_Gt; end if; end; else -- General case. declare Left_Val, Right_Val : Iir; R_List, L_List : Iir_List; R_Len, L_Len : Natural; P : Natural; Res : Compare_Type; begin Left_Val := Eval_String_Literal (Left); Right_Val := Eval_String_Literal (Right); L_List := Get_Simple_Aggregate_List (Left_Val); R_List := Get_Simple_Aggregate_List (Right_Val); L_Len := Get_Nbr_Elements (L_List); R_Len := Get_Nbr_Elements (R_List); Res := Compare_Eq; P := 0; while P < L_Len and P < R_Len loop Res := Eval_Discrete_Compare (Get_Nth_Element (L_List, P), Get_Nth_Element (R_List, P)); exit when Res /= Compare_Eq; P := P + 1; end loop; if Res = Compare_Eq then if L_Len < R_Len then Res := Compare_Lt; elsif L_Len > R_Len then Res := Compare_Gt; end if; end if; Free_Eval_Static_Expr (Left_Val, Left); Free_Eval_Static_Expr (Right_Val, Right); return Res; end; end if; end Eval_Array_Compare; -- ORIG is either a dyadic operator or a function call. function Eval_Dyadic_Operator (Orig : Iir; Imp : Iir; Left, Right : Iir) return Iir is pragma Unsuppress (Overflow_Check); Func : constant Iir_Predefined_Functions := Get_Implicit_Definition (Imp); begin if Get_Kind (Left) = Iir_Kind_Overflow_Literal or else Get_Kind (Right) = Iir_Kind_Overflow_Literal then return Build_Overflow (Orig); end if; case Func is when Iir_Predefined_Integer_Plus => return Build_Integer (Get_Value (Left) + Get_Value (Right), Orig); when Iir_Predefined_Integer_Minus => return Build_Integer (Get_Value (Left) - Get_Value (Right), Orig); when Iir_Predefined_Integer_Mul => return Build_Integer (Get_Value (Left) * Get_Value (Right), Orig); when Iir_Predefined_Integer_Div => if Check_Integer_Division_By_Zero (Orig, Right) then return Build_Integer (Get_Value (Left) / Get_Value (Right), Orig); else return Build_Overflow (Orig); end if; when Iir_Predefined_Integer_Mod => if Check_Integer_Division_By_Zero (Orig, Right) then return Build_Integer (Get_Value (Left) mod Get_Value (Right), Orig); else return Build_Overflow (Orig); end if; when Iir_Predefined_Integer_Rem => if Check_Integer_Division_By_Zero (Orig, Right) then return Build_Integer (Get_Value (Left) rem Get_Value (Right), Orig); else return Build_Overflow (Orig); end if; when Iir_Predefined_Integer_Exp => return Build_Integer (Get_Value (Left) ** Integer (Get_Value (Right)), Orig); when Iir_Predefined_Integer_Equality => return Build_Boolean (Get_Value (Left) = Get_Value (Right)); when Iir_Predefined_Integer_Inequality => return Build_Boolean (Get_Value (Left) /= Get_Value (Right)); when Iir_Predefined_Integer_Greater_Equal => return Build_Boolean (Get_Value (Left) >= Get_Value (Right)); when Iir_Predefined_Integer_Greater => return Build_Boolean (Get_Value (Left) > Get_Value (Right)); when Iir_Predefined_Integer_Less_Equal => return Build_Boolean (Get_Value (Left) <= Get_Value (Right)); when Iir_Predefined_Integer_Less => return Build_Boolean (Get_Value (Left) < Get_Value (Right)); when Iir_Predefined_Integer_Minimum => if Get_Value (Left) < Get_Value (Right) then return Left; else return Right; end if; when Iir_Predefined_Integer_Maximum => if Get_Value (Left) > Get_Value (Right) then return Left; else return Right; end if; when Iir_Predefined_Floating_Equality => return Build_Boolean (Get_Fp_Value (Left) = Get_Fp_Value (Right)); when Iir_Predefined_Floating_Inequality => return Build_Boolean (Get_Fp_Value (Left) /= Get_Fp_Value (Right)); when Iir_Predefined_Floating_Greater => return Build_Boolean (Get_Fp_Value (Left) > Get_Fp_Value (Right)); when Iir_Predefined_Floating_Greater_Equal => return Build_Boolean (Get_Fp_Value (Left) >= Get_Fp_Value (Right)); when Iir_Predefined_Floating_Less => return Build_Boolean (Get_Fp_Value (Left) < Get_Fp_Value (Right)); when Iir_Predefined_Floating_Less_Equal => return Build_Boolean (Get_Fp_Value (Left) <= Get_Fp_Value (Right)); when Iir_Predefined_Floating_Minus => return Build_Floating (Get_Fp_Value (Left) - Get_Fp_Value (Right), Orig); when Iir_Predefined_Floating_Plus => return Build_Floating (Get_Fp_Value (Left) + Get_Fp_Value (Right), Orig); when Iir_Predefined_Floating_Mul => return Build_Floating (Get_Fp_Value (Left) * Get_Fp_Value (Right), Orig); when Iir_Predefined_Floating_Div => if Get_Fp_Value (Right) = 0.0 then Warning_Msg_Sem ("right operand of division is 0", Orig); return Build_Overflow (Orig); else return Build_Floating (Get_Fp_Value (Left) / Get_Fp_Value (Right), Orig); end if; when Iir_Predefined_Floating_Exp => declare Exp : Iir_Int64; Res : Iir_Fp64; Val : Iir_Fp64; begin Res := 1.0; Val := Get_Fp_Value (Left); Exp := abs Get_Value (Right); while Exp /= 0 loop if Exp mod 2 = 1 then Res := Res * Val; end if; Exp := Exp / 2; Val := Val * Val; end loop; if Get_Value (Right) < 0 then Res := 1.0 / Res; end if; return Build_Floating (Res, Orig); end; when Iir_Predefined_Floating_Minimum => if Get_Fp_Value (Left) < Get_Fp_Value (Right) then return Left; else return Right; end if; when Iir_Predefined_Floating_Maximum => if Get_Fp_Value (Left) > Get_Fp_Value (Right) then return Left; else return Right; end if; when Iir_Predefined_Physical_Equality => return Build_Boolean (Get_Physical_Value (Left) = Get_Physical_Value (Right)); when Iir_Predefined_Physical_Inequality => return Build_Boolean (Get_Physical_Value (Left) /= Get_Physical_Value (Right)); when Iir_Predefined_Physical_Greater_Equal => return Build_Boolean (Get_Physical_Value (Left) >= Get_Physical_Value (Right)); when Iir_Predefined_Physical_Greater => return Build_Boolean (Get_Physical_Value (Left) > Get_Physical_Value (Right)); when Iir_Predefined_Physical_Less_Equal => return Build_Boolean (Get_Physical_Value (Left) <= Get_Physical_Value (Right)); when Iir_Predefined_Physical_Less => return Build_Boolean (Get_Physical_Value (Left) < Get_Physical_Value (Right)); when Iir_Predefined_Physical_Physical_Div => return Build_Integer (Get_Physical_Value (Left) / Get_Physical_Value (Right), Orig); when Iir_Predefined_Physical_Integer_Div => return Build_Physical (Get_Physical_Value (Left) / Get_Value (Right), Orig); when Iir_Predefined_Physical_Minus => return Build_Physical (Get_Physical_Value (Left) - Get_Physical_Value (Right), Orig); when Iir_Predefined_Physical_Plus => return Build_Physical (Get_Physical_Value (Left) + Get_Physical_Value (Right), Orig); when Iir_Predefined_Integer_Physical_Mul => return Build_Physical (Get_Value (Left) * Get_Physical_Value (Right), Orig); when Iir_Predefined_Physical_Integer_Mul => return Build_Physical (Get_Physical_Value (Left) * Get_Value (Right), Orig); when Iir_Predefined_Real_Physical_Mul => -- FIXME: overflow?? return Build_Physical (Iir_Int64 (Get_Fp_Value (Left) * Iir_Fp64 (Get_Physical_Value (Right))), Orig); when Iir_Predefined_Physical_Real_Mul => -- FIXME: overflow?? return Build_Physical (Iir_Int64 (Iir_Fp64 (Get_Physical_Value (Left)) * Get_Fp_Value (Right)), Orig); when Iir_Predefined_Physical_Real_Div => -- FIXME: overflow?? return Build_Physical (Iir_Int64 (Iir_Fp64 (Get_Physical_Value (Left)) / Get_Fp_Value (Right)), Orig); when Iir_Predefined_Physical_Minimum => return Build_Physical (Iir_Int64'Min (Get_Physical_Value (Left), Get_Physical_Value (Right)), Orig); when Iir_Predefined_Physical_Maximum => return Build_Physical (Iir_Int64'Max (Get_Physical_Value (Left), Get_Physical_Value (Right)), Orig); when Iir_Predefined_Element_Array_Concat | Iir_Predefined_Array_Element_Concat | Iir_Predefined_Array_Array_Concat | Iir_Predefined_Element_Element_Concat => return Eval_Concatenation (Left, Right, Orig, Func); when Iir_Predefined_Enum_Equality | Iir_Predefined_Bit_Match_Equality => return Build_Enumeration (Get_Enum_Pos (Left) = Get_Enum_Pos (Right), Orig); when Iir_Predefined_Enum_Inequality | Iir_Predefined_Bit_Match_Inequality => return Build_Enumeration (Get_Enum_Pos (Left) /= Get_Enum_Pos (Right), Orig); when Iir_Predefined_Enum_Greater_Equal | Iir_Predefined_Bit_Match_Greater_Equal => return Build_Enumeration (Get_Enum_Pos (Left) >= Get_Enum_Pos (Right), Orig); when Iir_Predefined_Enum_Greater | Iir_Predefined_Bit_Match_Greater => return Build_Enumeration (Get_Enum_Pos (Left) > Get_Enum_Pos (Right), Orig); when Iir_Predefined_Enum_Less_Equal | Iir_Predefined_Bit_Match_Less_Equal => return Build_Enumeration (Get_Enum_Pos (Left) <= Get_Enum_Pos (Right), Orig); when Iir_Predefined_Enum_Less | Iir_Predefined_Bit_Match_Less => return Build_Enumeration (Get_Enum_Pos (Left) < Get_Enum_Pos (Right), Orig); when Iir_Predefined_Enum_Minimum => if Get_Enum_Pos (Left) < Get_Enum_Pos (Right) then return Left; else return Right; end if; when Iir_Predefined_Enum_Maximum => if Get_Enum_Pos (Left) > Get_Enum_Pos (Right) then return Left; else return Right; end if; when Iir_Predefined_Boolean_And | Iir_Predefined_Bit_And => return Build_Enumeration (Get_Enum_Pos (Left) = 1 and Get_Enum_Pos (Right) = 1, Orig); when Iir_Predefined_Boolean_Nand | Iir_Predefined_Bit_Nand => return Build_Enumeration (not (Get_Enum_Pos (Left) = 1 and Get_Enum_Pos (Right) = 1), Orig); when Iir_Predefined_Boolean_Or | Iir_Predefined_Bit_Or => return Build_Enumeration (Get_Enum_Pos (Left) = 1 or Get_Enum_Pos (Right) = 1, Orig); when Iir_Predefined_Boolean_Nor | Iir_Predefined_Bit_Nor => return Build_Enumeration (not (Get_Enum_Pos (Left) = 1 or Get_Enum_Pos (Right) = 1), Orig); when Iir_Predefined_Boolean_Xor | Iir_Predefined_Bit_Xor => return Build_Enumeration (Get_Enum_Pos (Left) = 1 xor Get_Enum_Pos (Right) = 1, Orig); when Iir_Predefined_Boolean_Xnor | Iir_Predefined_Bit_Xnor => return Build_Enumeration (not (Get_Enum_Pos (Left) = 1 xor Get_Enum_Pos (Right) = 1), Orig); when Iir_Predefined_Dyadic_TF_Array_Functions => -- FIXME: only for bit ? return Eval_Dyadic_Bit_Array_Operator (Orig, Left, Right, Func); when Iir_Predefined_Universal_R_I_Mul => return Build_Floating (Get_Fp_Value (Left) * Iir_Fp64 (Get_Value (Right)), Orig); when Iir_Predefined_Universal_I_R_Mul => return Build_Floating (Iir_Fp64 (Get_Value (Left)) * Get_Fp_Value (Right), Orig); when Iir_Predefined_Universal_R_I_Div => return Build_Floating (Get_Fp_Value (Left) / Iir_Fp64 (Get_Value (Right)), Orig); when Iir_Predefined_Array_Sll | Iir_Predefined_Array_Srl | Iir_Predefined_Array_Sla | Iir_Predefined_Array_Sra | Iir_Predefined_Array_Rol | Iir_Predefined_Array_Ror => declare Left_Aggr : Iir; Res : Iir; begin Left_Aggr := Eval_String_Literal (Left); Res := Eval_Shift_Operator (Left_Aggr, Right, Orig, Func); Free_Eval_String_Literal (Left_Aggr, Left); return Res; end; when Iir_Predefined_Array_Equality => return Build_Boolean (Eval_Array_Compare (Left, Right) = Compare_Eq); when Iir_Predefined_Array_Inequality => return Build_Boolean (Eval_Array_Compare (Left, Right) /= Compare_Eq); when Iir_Predefined_Array_Less => return Build_Boolean (Eval_Array_Compare (Left, Right) = Compare_Lt); when Iir_Predefined_Array_Less_Equal => return Build_Boolean (Eval_Array_Compare (Left, Right) <= Compare_Eq); when Iir_Predefined_Array_Greater => return Build_Boolean (Eval_Array_Compare (Left, Right) = Compare_Gt); when Iir_Predefined_Array_Greater_Equal => return Build_Boolean (Eval_Array_Compare (Left, Right) >= Compare_Eq); when Iir_Predefined_Boolean_Not | Iir_Predefined_Boolean_Rising_Edge | Iir_Predefined_Boolean_Falling_Edge | Iir_Predefined_Bit_Not | Iir_Predefined_Bit_Rising_Edge | Iir_Predefined_Bit_Falling_Edge | Iir_Predefined_Integer_Absolute | Iir_Predefined_Integer_Identity | Iir_Predefined_Integer_Negation | Iir_Predefined_Floating_Absolute | Iir_Predefined_Floating_Negation | Iir_Predefined_Floating_Identity | Iir_Predefined_Physical_Absolute | Iir_Predefined_Physical_Identity | Iir_Predefined_Physical_Negation | Iir_Predefined_Error | Iir_Predefined_Record_Equality | Iir_Predefined_Record_Inequality | Iir_Predefined_Access_Equality | Iir_Predefined_Access_Inequality | Iir_Predefined_TF_Array_Not | Iir_Predefined_Now_Function | Iir_Predefined_Deallocate | Iir_Predefined_Write | Iir_Predefined_Read | Iir_Predefined_Read_Length | Iir_Predefined_Flush | Iir_Predefined_File_Open | Iir_Predefined_File_Open_Status | Iir_Predefined_File_Close | Iir_Predefined_Endfile | Iir_Predefined_Attribute_Image | Iir_Predefined_Attribute_Value | Iir_Predefined_Attribute_Pos | Iir_Predefined_Attribute_Val | Iir_Predefined_Attribute_Succ | Iir_Predefined_Attribute_Pred | Iir_Predefined_Attribute_Rightof | Iir_Predefined_Attribute_Leftof | Iir_Predefined_Attribute_Left | Iir_Predefined_Attribute_Right | Iir_Predefined_Attribute_Event | Iir_Predefined_Attribute_Active | Iir_Predefined_Attribute_Last_Value | Iir_Predefined_Attribute_Last_Event | Iir_Predefined_Attribute_Last_Active | Iir_Predefined_Attribute_Driving | Iir_Predefined_Attribute_Driving_Value | Iir_Predefined_Array_Char_To_String | Iir_Predefined_Bit_Vector_To_Ostring | Iir_Predefined_Bit_Vector_To_Hstring => -- Not binary or never locally static. Error_Internal (Orig, "eval_dyadic_operator: " & Iir_Predefined_Functions'Image (Func)); when Iir_Predefined_Bit_Condition => raise Internal_Error; when Iir_Predefined_Array_Minimum | Iir_Predefined_Array_Maximum | Iir_Predefined_Vector_Minimum | Iir_Predefined_Vector_Maximum => raise Internal_Error; when Iir_Predefined_Std_Ulogic_Match_Equality | Iir_Predefined_Std_Ulogic_Match_Inequality | Iir_Predefined_Std_Ulogic_Match_Less | Iir_Predefined_Std_Ulogic_Match_Less_Equal | Iir_Predefined_Std_Ulogic_Match_Greater | Iir_Predefined_Std_Ulogic_Match_Greater_Equal => -- TODO raise Internal_Error; when Iir_Predefined_Enum_To_String | Iir_Predefined_Integer_To_String | Iir_Predefined_Floating_To_String | Iir_Predefined_Real_To_String_Digits | Iir_Predefined_Real_To_String_Format | Iir_Predefined_Physical_To_String | Iir_Predefined_Time_To_String_Unit => -- TODO raise Internal_Error; when Iir_Predefined_TF_Array_Element_And | Iir_Predefined_TF_Element_Array_And | Iir_Predefined_TF_Array_Element_Or | Iir_Predefined_TF_Element_Array_Or | Iir_Predefined_TF_Array_Element_Nand | Iir_Predefined_TF_Element_Array_Nand | Iir_Predefined_TF_Array_Element_Nor | Iir_Predefined_TF_Element_Array_Nor | Iir_Predefined_TF_Array_Element_Xor | Iir_Predefined_TF_Element_Array_Xor | Iir_Predefined_TF_Array_Element_Xnor | Iir_Predefined_TF_Element_Array_Xnor => -- TODO raise Internal_Error; when Iir_Predefined_TF_Reduction_And | Iir_Predefined_TF_Reduction_Or | Iir_Predefined_TF_Reduction_Nand | Iir_Predefined_TF_Reduction_Nor | Iir_Predefined_TF_Reduction_Xor | Iir_Predefined_TF_Reduction_Xnor | Iir_Predefined_TF_Reduction_Not => -- TODO raise Internal_Error; when Iir_Predefined_Bit_Array_Match_Equality | Iir_Predefined_Bit_Array_Match_Inequality | Iir_Predefined_Std_Ulogic_Array_Match_Equality | Iir_Predefined_Std_Ulogic_Array_Match_Inequality => -- TODO raise Internal_Error; when Iir_Predefined_Explicit => raise Internal_Error; end case; exception when Constraint_Error => Warning_Msg_Sem ("arithmetic overflow in static expression", Orig); return Build_Overflow (Orig); end Eval_Dyadic_Operator; -- Evaluate any array attribute, return the type for the prefix. function Eval_Array_Attribute (Attr : Iir) return Iir is Prefix : Iir; Prefix_Type : Iir; begin Prefix := Get_Prefix (Attr); case Get_Kind (Prefix) is when Iir_Kinds_Object_Declaration -- FIXME: remove | Iir_Kind_Selected_Element | Iir_Kind_Indexed_Name | Iir_Kind_Slice_Name | Iir_Kind_Subtype_Declaration | Iir_Kind_Type_Declaration | Iir_Kind_Implicit_Dereference | Iir_Kind_Function_Call | Iir_Kind_Attribute_Value => Prefix_Type := Get_Type (Prefix); when Iir_Kinds_Subtype_Definition => Prefix_Type := Prefix; when Iir_Kinds_Denoting_Name => Prefix_Type := Get_Type (Prefix); when others => Error_Kind ("eval_array_attribute", Prefix); end case; if Get_Kind (Prefix_Type) /= Iir_Kind_Array_Subtype_Definition then Error_Kind ("eval_array_attribute(2)", Prefix_Type); end if; return Get_Nth_Element (Get_Index_Subtype_List (Prefix_Type), Natural (Get_Value (Get_Parameter (Attr)) - 1)); end Eval_Array_Attribute; function Eval_Integer_Image (Val : Iir_Int64; Orig : Iir) return Iir is use Str_Table; Img : String (1 .. 24); -- 23 is enough, 24 is rounded. L : Natural; V : Iir_Int64; Id : String8_Id; begin V := Val; L := Img'Last; loop Img (L) := Character'Val (Character'Pos ('0') + abs (V rem 10)); V := V / 10; L := L - 1; exit when V = 0; end loop; if Val < 0 then Img (L) := '-'; L := L - 1; end if; Id := Create_String8; for I in L + 1 .. Img'Last loop Append_String8_Char (Img (I)); end loop; return Build_String (Id, Nat32 (Img'Last - L), Orig); end Eval_Integer_Image; function Eval_Floating_Image (Val : Iir_Fp64; Orig : Iir) return Iir is use Str_Table; Id : String8_Id; -- Sign (1) + digit (1) + dot (1) + digits (15) + exp (1) + sign (1) -- + exp_digits (4) -> 24. Str : String (1 .. 25); P : Natural; V : Iir_Fp64; Vd : Iir_Fp64; Exp : Integer; D : Integer; B : Boolean; Res : Iir; begin -- Handle sign. if Val < 0.0 then Str (1) := '-'; P := 1; V := -Val; else P := 0; V := Val; end if; -- Compute the mantissa. -- FIXME: should do a dichotomy. if V = 0.0 then Exp := 0; elsif V < 1.0 then Exp := -1; while V * (10.0 ** (-Exp)) < 1.0 loop Exp := Exp - 1; end loop; else Exp := 0; while V / (10.0 ** Exp) >= 10.0 loop Exp := Exp + 1; end loop; end if; -- Normalize VAL: in [0; 10[ if Exp >= 0 then V := V / (10.0 ** Exp); else V := V * 10.0 ** (-Exp); end if; for I in 0 .. 15 loop Vd := Iir_Fp64'Truncation (V); P := P + 1; Str (P) := Character'Val (48 + Integer (Vd)); V := (V - Vd) * 10.0; if I = 0 then P := P + 1; Str (P) := '.'; end if; exit when I > 0 and V < 10.0 ** (I + 1 - 15); end loop; if Exp /= 0 then -- LRM93 14.3 -- if the exponent is present, the `e' is written as a lower case -- character. P := P + 1; Str (P) := 'e'; if Exp < 0 then P := P + 1; Str (P) := '-'; Exp := -Exp; end if; B := False; for I in 0 .. 4 loop D := (Exp / 10000) mod 10; if D /= 0 or B or I = 4 then P := P + 1; Str (P) := Character'Val (48 + D); B := True; end if; Exp := (Exp - D * 10000) * 10; end loop; end if; Id := Create_String8; for I in 1 .. P loop Append_String8_Char (Str (I)); end loop; Res := Build_String (Id, Int32 (P), Orig); -- FIXME: this is not correct since the type is *not* constrained. Set_Type (Res, Create_Unidim_Array_By_Length (Get_Type (Orig), Iir_Int64 (P), Orig)); return Res; end Eval_Floating_Image; function Eval_Enumeration_Image (Lit : Iir; Orig : Iir) return Iir is use Str_Table; Name : constant String := Image_Identifier (Lit); Image_Id : constant String8_Id := Str_Table.Create_String8; begin Append_String8_String (Name); return Build_String (Image_Id, Name'Length, Orig); end Eval_Enumeration_Image; function Build_Enumeration_Value (Val : String; Enum, Expr : Iir) return Iir is Value : String (Val'range); List : constant Iir_List := Get_Enumeration_Literal_List (Enum); begin for I in Val'range loop Value (I) := Ada.Characters.Handling.To_Lower (Val (I)); end loop; for I in 0 .. Get_Nbr_Elements (List) - 1 loop if Value = Image_Identifier (Get_Nth_Element (List, I)) then return Build_Enumeration (Iir_Index32 (I), Expr); end if; end loop; Warning_Msg_Sem ("value """ & Value & """ not in enumeration " & Disp_Node (Enum), Expr); return Build_Overflow (Expr); end Build_Enumeration_Value; function Eval_Physical_Image (Phys, Expr: Iir) return Iir is -- Reduces to the base unit (e.g. femtoseconds). Value : constant String := Iir_Int64'Image (Get_Physical_Value (Phys)); Unit : constant Iir := Get_Primary_Unit (Get_Base_Type (Get_Type (Phys))); UnitName : constant String := Image_Identifier (Unit); Image_Id : constant String8_Id := Str_Table.Create_String8; Length : Nat32 := Value'Length + UnitName'Length + 1; begin for I in Value'range loop -- Suppress the Ada +ve integer'image leading space if I > Value'first or else Value (I) /= ' ' then Str_Table.Append_String8_Char (Value (I)); else Length := Length - 1; end if; end loop; Str_Table.Append_String8_Char (' '); for I in UnitName'range loop Str_Table.Append_String8_Char (UnitName (I)); end loop; return Build_String (Image_Id, Length, Expr); end Eval_Physical_Image; function Build_Physical_Value (Val: String; Phys_Type, Expr: Iir) return Iir is function White (C : in Character) return Boolean is NBSP : constant Character := Character'Val (160); HT : constant Character := Character'Val (9); begin return C = ' ' or C = NBSP or C = HT; end White; UnitName : String (Val'range); Mult : Iir_Int64; Sep : Natural; Found_Unit : Boolean := false; Found_Real : Boolean := false; Unit : Iir := Get_Primary_Unit (Phys_Type); begin -- Separate string into numeric value and make lowercase unit. for I in reverse Val'range loop UnitName (I) := Ada.Characters.Handling.To_Lower (Val (I)); if White (Val (I)) and Found_Unit then Sep := I; exit; else Found_Unit := true; end if; end loop; -- Unit name is UnitName(Sep+1..Unit'Last) for I in Val'First .. Sep loop if Val (I) = '.' then Found_Real := true; end if; end loop; -- Chain down the units looking for matching one Unit := Get_Primary_Unit (Phys_Type); while Unit /= Null_Iir loop exit when (UnitName (Sep + 1 .. UnitName'Last) = Image_Identifier (Unit)); Unit := Get_Chain (Unit); end loop; if Unit = Null_Iir then Warning_Msg_Sem ("Unit """ & UnitName (Sep + 1 .. UnitName'Last) & """ not in physical type", Expr); return Build_Overflow (Expr); end if; Mult := Get_Value (Get_Physical_Unit_Value (Unit)); if Found_Real then return Build_Physical (Iir_Int64 (Iir_Fp64'Value (Val (Val'First .. Sep)) * Iir_Fp64 (Mult)), Expr); else return Build_Physical (Iir_Int64'Value (Val (Val'First .. Sep)) * Mult, Expr); end if; end Build_Physical_Value; function Eval_Enum_To_String (Lit : Iir; Orig : Iir) return Iir is use Str_Table; Id : constant Name_Id := Get_Identifier (Lit); Image_Id : constant String8_Id := Str_Table.Create_String8; Len : Natural; begin if Get_Base_Type (Get_Type (Lit)) = Character_Type_Definition then -- LRM08 5.7 String representations -- - For a given value of type CHARACTER, the string representation -- contains one element that is the given value. Append_String8 (Nat8 (Get_Enum_Pos (Lit))); Len := 1; elsif Is_Character (Id) then -- LRM08 5.7 String representations -- - For a given value of an enumeration type other than CHARACTER, -- if the value is a character literal, the string representation -- contains a single element that is the character literal; [...] Append_String8_Char (Get_Character (Id)); Len := 1; else -- LRM08 5.7 String representations -- - [...] otherwise, the string representation is the sequence of -- characters in the identifier that is the given value. -- FIXME: extended identifier. Image (Id); if Nam_Buffer (1) /= '\' then Append_String8_String (Nam_Buffer (1 .. Nam_Length)); Len := Nam_Length; else declare Skip : Boolean; C : Character; begin Len := 0; Skip := False; for I in 2 .. Nam_Length - 1 loop if Skip then Skip := False; else C := Nam_Buffer (I); Append_String8_Char (C); Skip := C = '\'; Len := Len + 1; end if; end loop; end; end if; end if; return Build_String (Image_Id, Nat32 (Len), Orig); end Eval_Enum_To_String; function Eval_Incdec (Expr : Iir; N : Iir_Int64; Origin : Iir) return Iir is P : Iir_Int64; begin case Get_Kind (Expr) is when Iir_Kind_Integer_Literal => return Build_Integer (Get_Value (Expr) + N, Origin); when Iir_Kind_Enumeration_Literal => P := Iir_Int64 (Get_Enum_Pos (Expr)) + N; if P < 0 or else (P >= Iir_Int64 (Get_Nbr_Elements (Get_Enumeration_Literal_List (Get_Base_Type (Get_Type (Expr)))))) then Warning_Msg_Sem ("static constant violates bounds", Expr); return Build_Overflow (Origin); else return Build_Enumeration (Iir_Index32 (P), Origin); end if; when Iir_Kind_Physical_Int_Literal | Iir_Kind_Unit_Declaration => return Build_Physical (Get_Physical_Value (Expr) + N, Origin); when others => Error_Kind ("eval_incdec", Expr); end case; end Eval_Incdec; function Convert_Range (Rng : Iir; Res_Type : Iir; Loc : Iir) return Iir is Res_Btype : Iir; function Create_Bound (Val : Iir) return Iir is R : Iir; begin R := Create_Iir (Iir_Kind_Integer_Literal); Location_Copy (R, Loc); Set_Value (R, Get_Value (Val)); Set_Type (R, Res_Btype); Set_Expr_Staticness (R, Locally); return R; end Create_Bound; Res : Iir; begin Res_Btype := Get_Base_Type (Res_Type); Res := Create_Iir (Iir_Kind_Range_Expression); Location_Copy (Res, Loc); Set_Type (Res, Res_Btype); Set_Left_Limit (Res, Create_Bound (Get_Left_Limit (Rng))); Set_Right_Limit (Res, Create_Bound (Get_Right_Limit (Rng))); Set_Direction (Res, Get_Direction (Rng)); Set_Expr_Staticness (Res, Locally); return Res; end Convert_Range; function Eval_Array_Type_Conversion (Conv : Iir; Val : Iir) return Iir is Conv_Type : constant Iir := Get_Type (Conv); Val_Type : constant Iir := Get_Type (Val); Conv_Index_Type : constant Iir := Get_Index_Type (Conv_Type, 0); Val_Index_Type : constant Iir := Get_Index_Type (Val_Type, 0); Index_Type : Iir; Res_Type : Iir; Res : Iir; Rng : Iir; begin -- The expression is either a simple aggregate or a (bit) string. Res := Build_Constant (Val, Conv); if Get_Constraint_State (Conv_Type) = Fully_Constrained then Set_Type (Res, Conv_Type); if Eval_Discrete_Type_Length (Conv_Index_Type) /= Eval_Discrete_Type_Length (Val_Index_Type) then Warning_Msg_Sem ("non matching length in type conversion", Conv); return Build_Overflow (Conv); end if; return Res; else if Get_Base_Type (Conv_Index_Type) = Get_Base_Type (Val_Index_Type) then Index_Type := Val_Index_Type; else -- Convert the index range. -- It is an integer type. Rng := Convert_Range (Get_Range_Constraint (Val_Index_Type), Conv_Index_Type, Conv); Index_Type := Create_Iir (Iir_Kind_Integer_Subtype_Definition); Location_Copy (Index_Type, Conv); Set_Range_Constraint (Index_Type, Rng); Set_Base_Type (Index_Type, Get_Base_Type (Conv_Index_Type)); Set_Type_Staticness (Index_Type, Locally); end if; Res_Type := Create_Unidim_Array_From_Index (Get_Base_Type (Conv_Type), Index_Type, Conv); Set_Type (Res, Res_Type); Set_Type_Conversion_Subtype (Conv, Res_Type); return Res; end if; end Eval_Array_Type_Conversion; function Eval_Type_Conversion (Expr : Iir) return Iir is Val : Iir; Val_Type : Iir; Conv_Type : Iir; Res : Iir; begin Val := Eval_Static_Expr (Get_Expression (Expr)); Val_Type := Get_Base_Type (Get_Type (Val)); Conv_Type := Get_Base_Type (Get_Type (Expr)); if Conv_Type = Val_Type then Res := Build_Constant (Val, Expr); else case Get_Kind (Conv_Type) is when Iir_Kind_Integer_Type_Definition => case Get_Kind (Val_Type) is when Iir_Kind_Integer_Type_Definition => Res := Build_Integer (Get_Value (Val), Expr); when Iir_Kind_Floating_Type_Definition => Res := Build_Integer (Iir_Int64 (Get_Fp_Value (Val)), Expr); when others => Error_Kind ("eval_type_conversion(1)", Val_Type); end case; when Iir_Kind_Floating_Type_Definition => case Get_Kind (Val_Type) is when Iir_Kind_Integer_Type_Definition => Res := Build_Floating (Iir_Fp64 (Get_Value (Val)), Expr); when Iir_Kind_Floating_Type_Definition => Res := Build_Floating (Get_Fp_Value (Val), Expr); when others => Error_Kind ("eval_type_conversion(2)", Val_Type); end case; when Iir_Kind_Array_Type_Definition => -- Not a scalar, do not check bounds. return Eval_Array_Type_Conversion (Expr, Val); when others => Error_Kind ("eval_type_conversion(3)", Conv_Type); end case; end if; if not Eval_Is_In_Bound (Res, Get_Type (Expr)) then if Get_Kind (Res) /= Iir_Kind_Overflow_Literal then Warning_Msg_Sem ("result of conversion out of bounds", Expr); Res := Build_Overflow (Res); end if; end if; return Res; end Eval_Type_Conversion; function Eval_Physical_Literal (Expr : Iir) return Iir is Val : Iir; begin case Get_Kind (Expr) is when Iir_Kind_Physical_Fp_Literal => Val := Expr; when Iir_Kind_Physical_Int_Literal => if Get_Named_Entity (Get_Unit_Name (Expr)) = Get_Primary_Unit (Get_Base_Type (Get_Type (Expr))) then return Expr; else Val := Expr; end if; when Iir_Kind_Unit_Declaration => Val := Expr; when Iir_Kinds_Denoting_Name => Val := Get_Named_Entity (Expr); pragma Assert (Get_Kind (Val) = Iir_Kind_Unit_Declaration); when others => Error_Kind ("eval_physical_literal", Expr); end case; return Build_Physical (Get_Physical_Value (Val), Expr); end Eval_Physical_Literal; function Eval_Static_Expr (Expr: Iir) return Iir is Res : Iir; Val : Iir; begin case Get_Kind (Expr) is when Iir_Kinds_Denoting_Name => return Eval_Static_Expr (Get_Named_Entity (Expr)); when Iir_Kind_Integer_Literal | Iir_Kind_Enumeration_Literal | Iir_Kind_Floating_Point_Literal | Iir_Kind_String_Literal8 | Iir_Kind_Overflow_Literal | Iir_Kind_Physical_Int_Literal | Iir_Kind_Physical_Fp_Literal => return Expr; when Iir_Kind_Constant_Declaration => Val := Eval_Static_Expr (Get_Default_Value (Expr)); -- Type of the expression should be type of the constant -- declaration at least in case of array subtype. -- If the constant is declared as an unconstrained array, get type -- from the default value. -- FIXME: handle this during semantisation of the declaration: -- add an implicit subtype conversion node ? -- FIXME: this currently creates a node at each evalation. if Get_Kind (Get_Type (Val)) = Iir_Kind_Array_Type_Definition then Res := Build_Constant (Val, Expr); Set_Type (Res, Get_Type (Val)); return Res; else return Val; end if; when Iir_Kind_Object_Alias_Declaration => return Eval_Static_Expr (Get_Name (Expr)); when Iir_Kind_Unit_Declaration => return Get_Physical_Unit_Value (Expr); when Iir_Kind_Simple_Aggregate => return Expr; when Iir_Kind_Parenthesis_Expression => return Eval_Static_Expr (Get_Expression (Expr)); when Iir_Kind_Qualified_Expression => return Eval_Static_Expr (Get_Expression (Expr)); when Iir_Kind_Type_Conversion => return Eval_Type_Conversion (Expr); when Iir_Kinds_Monadic_Operator => declare Operand : Iir; begin Operand := Eval_Static_Expr (Get_Operand (Expr)); return Eval_Monadic_Operator (Expr, Operand); end; when Iir_Kinds_Dyadic_Operator => declare Left : constant Iir := Get_Left (Expr); Right : constant Iir := Get_Right (Expr); Left_Val, Right_Val : Iir; Res : Iir; begin Left_Val := Eval_Static_Expr (Left); Right_Val := Eval_Static_Expr (Right); Res := Eval_Dyadic_Operator (Expr, Get_Implementation (Expr), Left_Val, Right_Val); Free_Eval_Static_Expr (Left_Val, Left); Free_Eval_Static_Expr (Right_Val, Right); return Res; end; when Iir_Kind_Attribute_Name => -- An attribute name designates an attribute value. declare Attr_Val : constant Iir := Get_Named_Entity (Expr); Attr_Expr : constant Iir := Get_Expression (Get_Attribute_Specification (Attr_Val)); Val : Iir; begin Val := Eval_Static_Expr (Attr_Expr); -- FIXME: see constant_declaration. -- Currently, this avoids weird nodes, such as a string literal -- whose type is an unconstrained array type. Res := Build_Constant (Val, Expr); Set_Type (Res, Get_Type (Val)); return Res; end; when Iir_Kind_Pos_Attribute => declare Param : constant Iir := Get_Parameter (Expr); Val : Iir; Res : Iir; begin Val := Eval_Static_Expr (Param); -- FIXME: check bounds, handle overflow. Res := Build_Integer (Eval_Pos (Val), Expr); Free_Eval_Static_Expr (Val, Param); return Res; end; when Iir_Kind_Val_Attribute => declare Expr_Type : constant Iir := Get_Type (Expr); Val_Expr : Iir; Val : Iir_Int64; begin Val_Expr := Eval_Static_Expr (Get_Parameter (Expr)); Val := Eval_Pos (Val_Expr); -- Note: the type of 'val is a base type. -- FIXME: handle VHDL93 restrictions. if Get_Kind (Expr_Type) = Iir_Kind_Enumeration_Type_Definition and then not Eval_Int_In_Range (Val, Get_Range_Constraint (Expr_Type)) then Warning_Msg_Sem ("static argument out of the type range", Expr); return Build_Overflow (Expr); end if; if Get_Kind (Get_Base_Type (Get_Type (Expr))) = Iir_Kind_Physical_Type_Definition then return Build_Physical (Val, Expr); else return Build_Discrete (Val, Expr); end if; end; when Iir_Kind_Image_Attribute => declare Param : Iir; Param_Type : Iir; begin Param := Get_Parameter (Expr); Param := Eval_Static_Expr (Param); Set_Parameter (Expr, Param); -- Special case for overflow. if Get_Kind (Param) = Iir_Kind_Overflow_Literal then return Build_Overflow (Expr); end if; Param_Type := Get_Base_Type (Get_Type (Param)); case Get_Kind (Param_Type) is when Iir_Kind_Integer_Type_Definition => return Eval_Integer_Image (Get_Value (Param), Expr); when Iir_Kind_Floating_Type_Definition => return Eval_Floating_Image (Get_Fp_Value (Param), Expr); when Iir_Kind_Enumeration_Type_Definition => return Eval_Enumeration_Image (Param, Expr); when Iir_Kind_Physical_Type_Definition => return Eval_Physical_Image (Param, Expr); when others => Error_Kind ("eval_static_expr('image)", Param); end case; end; when Iir_Kind_Value_Attribute => declare Param : Iir; Param_Type : Iir; begin Param := Get_Parameter (Expr); Param := Eval_Static_Expr (Param); Set_Parameter (Expr, Param); if Get_Kind (Param) /= Iir_Kind_String_Literal8 then -- FIXME: Isn't it an implementation restriction. Warning_Msg_Sem ("'value argument not a string", Expr); return Build_Overflow (Expr); else -- what type are we converting the string to? Param_Type := Get_Base_Type (Get_Type (Expr)); declare Value : constant String := Image_String_Lit (Param); begin case Get_Kind (Param_Type) is when Iir_Kind_Integer_Type_Definition => return Build_Discrete (Iir_Int64'Value (Value), Expr); when Iir_Kind_Enumeration_Type_Definition => return Build_Enumeration_Value (Value, Param_Type, Expr); when Iir_Kind_Floating_Type_Definition => return Build_Floating (Iir_Fp64'value (Value), Expr); when Iir_Kind_Physical_Type_Definition => return Build_Physical_Value (Value, Param_Type, Expr); when others => Error_Kind ("eval_static_expr('value)", Param); end case; end; end if; end; when Iir_Kind_Left_Type_Attribute => return Eval_Static_Expr (Get_Left_Limit (Eval_Static_Range (Get_Prefix (Expr)))); when Iir_Kind_Right_Type_Attribute => return Eval_Static_Expr (Get_Right_Limit (Eval_Static_Range (Get_Prefix (Expr)))); when Iir_Kind_High_Type_Attribute => return Eval_Static_Expr (Get_High_Limit (Eval_Static_Range (Get_Prefix (Expr)))); when Iir_Kind_Low_Type_Attribute => return Eval_Static_Expr (Get_Low_Limit (Eval_Static_Range (Get_Prefix (Expr)))); when Iir_Kind_Ascending_Type_Attribute => return Build_Boolean (Get_Direction (Eval_Static_Range (Get_Prefix (Expr))) = Iir_To); when Iir_Kind_Length_Array_Attribute => declare Index : Iir; begin Index := Eval_Array_Attribute (Expr); return Build_Discrete (Eval_Discrete_Type_Length (Index), Expr); end; when Iir_Kind_Left_Array_Attribute => declare Index : Iir; begin Index := Eval_Array_Attribute (Expr); return Eval_Static_Expr (Get_Left_Limit (Get_Range_Constraint (Index))); end; when Iir_Kind_Right_Array_Attribute => declare Index : Iir; begin Index := Eval_Array_Attribute (Expr); return Eval_Static_Expr (Get_Right_Limit (Get_Range_Constraint (Index))); end; when Iir_Kind_Low_Array_Attribute => declare Index : Iir; begin Index := Eval_Array_Attribute (Expr); return Eval_Static_Expr (Get_Low_Limit (Get_Range_Constraint (Index))); end; when Iir_Kind_High_Array_Attribute => declare Index : Iir; begin Index := Eval_Array_Attribute (Expr); return Eval_Static_Expr (Get_High_Limit (Get_Range_Constraint (Index))); end; when Iir_Kind_Ascending_Array_Attribute => declare Index : Iir; begin Index := Eval_Array_Attribute (Expr); return Build_Boolean (Get_Direction (Get_Range_Constraint (Index)) = Iir_To); end; when Iir_Kind_Pred_Attribute => Res := Eval_Incdec (Eval_Static_Expr (Get_Parameter (Expr)), -1, Expr); Eval_Check_Bound (Res, Get_Type (Get_Prefix (Expr))); return Res; when Iir_Kind_Succ_Attribute => Res := Eval_Incdec (Eval_Static_Expr (Get_Parameter (Expr)), +1, Expr); Eval_Check_Bound (Res, Get_Type (Get_Prefix (Expr))); return Res; when Iir_Kind_Leftof_Attribute | Iir_Kind_Rightof_Attribute => declare Rng : Iir; N : Iir_Int64; Prefix_Type : constant Iir := Get_Type (Get_Prefix (Expr)); Res : Iir; begin Rng := Eval_Static_Range (Prefix_Type); case Get_Direction (Rng) is when Iir_To => N := 1; when Iir_Downto => N := -1; end case; case Get_Kind (Expr) is when Iir_Kind_Leftof_Attribute => N := -N; when Iir_Kind_Rightof_Attribute => null; when others => raise Internal_Error; end case; Res := Eval_Incdec (Eval_Static_Expr (Get_Parameter (Expr)), N, Expr); Eval_Check_Bound (Res, Prefix_Type); return Res; end; when Iir_Kind_Simple_Name_Attribute => declare use Str_Table; Id : String8_Id; begin Id := Create_String8; Image (Get_Simple_Name_Identifier (Expr)); for I in 1 .. Nam_Length loop Append_String8_Char (Nam_Buffer (I)); end loop; return Build_String (Id, Nat32 (Nam_Length), Expr); end; when Iir_Kind_Null_Literal => return Expr; when Iir_Kind_Function_Call => declare Imp : constant Iir := Get_Implementation (Expr); Left, Right : Iir; begin -- Note: there can't be association by name. Left := Get_Parameter_Association_Chain (Expr); Right := Get_Chain (Left); Left := Eval_Static_Expr (Get_Actual (Left)); if Right = Null_Iir then return Eval_Monadic_Operator (Expr, Left); else Right := Eval_Static_Expr (Get_Actual (Right)); return Eval_Dyadic_Operator (Expr, Imp, Left, Right); end if; end; when Iir_Kind_Error => return Expr; when others => Error_Kind ("eval_static_expr", Expr); end case; end Eval_Static_Expr; -- If FORCE is true, always return a literal. function Eval_Expr_Keep_Orig (Expr : Iir; Force : Boolean) return Iir is Res : Iir; begin case Get_Kind (Expr) is when Iir_Kinds_Denoting_Name => declare Orig : constant Iir := Get_Named_Entity (Expr); begin Res := Eval_Static_Expr (Orig); if Res /= Orig or else Force then return Build_Constant (Res, Expr); else return Expr; end if; end; when others => Res := Eval_Static_Expr (Expr); if Res /= Expr and then Get_Literal_Origin (Res) /= Expr then -- Need to build a constant if the result is a different -- literal not tied to EXPR. return Build_Constant (Res, Expr); else return Res; end if; end case; end Eval_Expr_Keep_Orig; function Eval_Expr (Expr: Iir) return Iir is begin if Get_Expr_Staticness (Expr) /= Locally then Error_Msg_Sem ("expression must be locally static", Expr); return Expr; else return Eval_Expr_Keep_Orig (Expr, False); end if; end Eval_Expr; function Eval_Expr_If_Static (Expr : Iir) return Iir is begin if Expr /= Null_Iir and then Get_Expr_Staticness (Expr) = Locally then return Eval_Expr_Keep_Orig (Expr, False); else return Expr; end if; end Eval_Expr_If_Static; function Eval_Expr_Check (Expr : Iir; Sub_Type : Iir) return Iir is Res : Iir; begin Res := Eval_Expr_Keep_Orig (Expr, False); Eval_Check_Bound (Res, Sub_Type); return Res; end Eval_Expr_Check; function Eval_Expr_Check_If_Static (Expr : Iir; Atype : Iir) return Iir is Res : Iir; begin if Expr /= Null_Iir and then Get_Expr_Staticness (Expr) = Locally then -- Expression is static and can be evaluated. Res := Eval_Expr_Keep_Orig (Expr, False); if Res /= Null_Iir and then Get_Type_Staticness (Atype) = Locally and then Get_Kind (Atype) in Iir_Kinds_Range_Type_Definition then -- Check bounds (as this can be done). -- FIXME: create overflow_expr ? Eval_Check_Bound (Res, Atype); end if; return Res; else return Expr; end if; end Eval_Expr_Check_If_Static; function Eval_Int_In_Range (Val : Iir_Int64; Bound : Iir) return Boolean is begin case Get_Kind (Bound) is when Iir_Kind_Range_Expression => case Get_Direction (Bound) is when Iir_To => if Val < Eval_Pos (Get_Left_Limit (Bound)) or else Val > Eval_Pos (Get_Right_Limit (Bound)) then return False; end if; when Iir_Downto => if Val > Eval_Pos (Get_Left_Limit (Bound)) or else Val < Eval_Pos (Get_Right_Limit (Bound)) then return False; end if; end case; when others => Error_Kind ("eval_int_in_range", Bound); end case; return True; end Eval_Int_In_Range; function Eval_Phys_In_Range (Val : Iir_Int64; Bound : Iir) return Boolean is Left, Right : Iir_Int64; begin case Get_Kind (Bound) is when Iir_Kind_Range_Expression => case Get_Kind (Get_Type (Get_Left_Limit (Bound))) is when Iir_Kind_Integer_Type_Definition | Iir_Kind_Integer_Subtype_Definition => Left := Get_Value (Get_Left_Limit (Bound)); Right := Get_Value (Get_Right_Limit (Bound)); when Iir_Kind_Physical_Type_Definition | Iir_Kind_Physical_Subtype_Definition => Left := Get_Physical_Value (Get_Left_Limit (Bound)); Right := Get_Physical_Value (Get_Right_Limit (Bound)); when others => Error_Kind ("eval_phys_in_range(1)", Get_Type (Bound)); end case; case Get_Direction (Bound) is when Iir_To => if Val < Left or else Val > Right then return False; end if; when Iir_Downto => if Val > Left or else Val < Right then return False; end if; end case; when others => Error_Kind ("eval_phys_in_range", Bound); end case; return True; end Eval_Phys_In_Range; function Eval_Fp_In_Range (Val : Iir_Fp64; Bound : Iir) return Boolean is begin case Get_Kind (Bound) is when Iir_Kind_Range_Expression => case Get_Direction (Bound) is when Iir_To => if Val < Get_Fp_Value (Get_Left_Limit (Bound)) or else Val > Get_Fp_Value (Get_Right_Limit (Bound)) then return False; end if; when Iir_Downto => if Val > Get_Fp_Value (Get_Left_Limit (Bound)) or else Val < Get_Fp_Value (Get_Right_Limit (Bound)) then return False; end if; end case; when others => Error_Kind ("eval_fp_in_range", Bound); end case; return True; end Eval_Fp_In_Range; -- Return TRUE if literal EXPR is in SUB_TYPE bounds. function Eval_Is_In_Bound (Expr : Iir; Sub_Type : Iir) return Boolean is Type_Range : Iir; Val : Iir; begin case Get_Kind (Expr) is when Iir_Kind_Error => -- Ignore errors. return True; when Iir_Kind_Overflow_Literal => -- Never within bounds return False; when Iir_Kind_Simple_Name | Iir_Kind_Character_Literal | Iir_Kind_Selected_Name => Val := Get_Named_Entity (Expr); when others => Val := Expr; end case; case Get_Kind (Sub_Type) is when Iir_Kind_Integer_Subtype_Definition => Type_Range := Get_Range_Constraint (Sub_Type); return Eval_Int_In_Range (Get_Value (Val), Type_Range); when Iir_Kind_Floating_Subtype_Definition => Type_Range := Get_Range_Constraint (Sub_Type); return Eval_Fp_In_Range (Get_Fp_Value (Val), Type_Range); when Iir_Kind_Enumeration_Subtype_Definition | Iir_Kind_Enumeration_Type_Definition => -- A check is required for an enumeration type definition for -- 'val attribute. Type_Range := Get_Range_Constraint (Sub_Type); return Eval_Int_In_Range (Iir_Int64 (Get_Enum_Pos (Val)), Type_Range); when Iir_Kind_Physical_Subtype_Definition => Type_Range := Get_Range_Constraint (Sub_Type); return Eval_Phys_In_Range (Get_Physical_Value (Val), Type_Range); when Iir_Kind_Base_Attribute => return Eval_Is_In_Bound (Val, Get_Type (Sub_Type)); when Iir_Kind_Array_Subtype_Definition | Iir_Kind_Array_Type_Definition | Iir_Kind_Record_Type_Definition => -- FIXME: do it. return True; when others => Error_Kind ("eval_is_in_bound", Sub_Type); end case; end Eval_Is_In_Bound; procedure Eval_Check_Bound (Expr : Iir; Sub_Type : Iir) is begin if Get_Kind (Expr) = Iir_Kind_Overflow_Literal then -- Nothing to check, and a message was already generated. return; end if; if not Eval_Is_In_Bound (Expr, Sub_Type) then Error_Msg_Sem ("static constant violates bounds", Expr); end if; end Eval_Check_Bound; function Eval_Is_Range_In_Bound (A_Range : Iir; Sub_Type : Iir; Any_Dir : Boolean) return Boolean is Type_Range : Iir; Range_Constraint : constant Iir := Eval_Static_Range (A_Range); begin Type_Range := Get_Range_Constraint (Sub_Type); if not Any_Dir and then Get_Direction (Type_Range) /= Get_Direction (Range_Constraint) then return True; end if; case Get_Kind (Sub_Type) is when Iir_Kind_Integer_Subtype_Definition | Iir_Kind_Physical_Subtype_Definition | Iir_Kind_Enumeration_Subtype_Definition | Iir_Kind_Enumeration_Type_Definition => declare L, R : Iir_Int64; begin -- Check for null range. L := Eval_Pos (Get_Left_Limit (Range_Constraint)); R := Eval_Pos (Get_Right_Limit (Range_Constraint)); case Get_Direction (Range_Constraint) is when Iir_To => if L > R then return True; end if; when Iir_Downto => if L < R then return True; end if; end case; return Eval_Int_In_Range (L, Type_Range) and then Eval_Int_In_Range (R, Type_Range); end; when Iir_Kind_Floating_Subtype_Definition => declare L, R : Iir_Fp64; begin -- Check for null range. L := Get_Fp_Value (Get_Left_Limit (Range_Constraint)); R := Get_Fp_Value (Get_Right_Limit (Range_Constraint)); case Get_Direction (Range_Constraint) is when Iir_To => if L > R then return True; end if; when Iir_Downto => if L < R then return True; end if; end case; return Eval_Fp_In_Range (L, Type_Range) and then Eval_Fp_In_Range (R, Type_Range); end; when others => Error_Kind ("eval_is_range_in_bound", Sub_Type); end case; -- Should check L <= R or L >= R according to direction. --return Eval_Is_In_Bound (Get_Left_Limit (A_Range), Sub_Type) -- and then Eval_Is_In_Bound (Get_Right_Limit (A_Range), Sub_Type); end Eval_Is_Range_In_Bound; procedure Eval_Check_Range (A_Range : Iir; Sub_Type : Iir; Any_Dir : Boolean) is begin if not Eval_Is_Range_In_Bound (A_Range, Sub_Type, Any_Dir) then Error_Msg_Sem ("static range violates bounds", A_Range); end if; end Eval_Check_Range; function Eval_Discrete_Range_Length (Constraint : Iir) return Iir_Int64 is -- We don't want to deal with very large ranges here. pragma Suppress (Overflow_Check); Res : Iir_Int64; Left, Right : Iir_Int64; begin Left := Eval_Pos (Get_Left_Limit (Constraint)); Right := Eval_Pos (Get_Right_Limit (Constraint)); case Get_Direction (Constraint) is when Iir_To => if Right < Left then -- Null range. return 0; else Res := Right - Left + 1; end if; when Iir_Downto => if Left < Right then -- Null range return 0; else Res := Left - Right + 1; end if; end case; return Res; end Eval_Discrete_Range_Length; function Eval_Discrete_Type_Length (Sub_Type : Iir) return Iir_Int64 is begin case Get_Kind (Sub_Type) is when Iir_Kind_Enumeration_Subtype_Definition | Iir_Kind_Enumeration_Type_Definition | Iir_Kind_Integer_Subtype_Definition => return Eval_Discrete_Range_Length (Get_Range_Constraint (Sub_Type)); when others => Error_Kind ("eval_discrete_type_length", Sub_Type); end case; end Eval_Discrete_Type_Length; function Eval_Pos (Expr : Iir) return Iir_Int64 is begin case Get_Kind (Expr) is when Iir_Kind_Integer_Literal => return Get_Value (Expr); when Iir_Kind_Enumeration_Literal => return Iir_Int64 (Get_Enum_Pos (Expr)); when Iir_Kind_Physical_Int_Literal | Iir_Kind_Physical_Fp_Literal | Iir_Kind_Unit_Declaration => return Get_Physical_Value (Expr); when Iir_Kinds_Denoting_Name => return Eval_Pos (Get_Named_Entity (Expr)); when others => Error_Kind ("eval_pos", Expr); end case; end Eval_Pos; function Eval_Static_Range (Rng : Iir) return Iir is Expr : Iir; Kind : Iir_Kind; begin Expr := Rng; loop Kind := Get_Kind (Expr); case Kind is when Iir_Kind_Range_Expression => if Get_Expr_Staticness (Expr) /= Locally then return Null_Iir; end if; -- Normalize the range expression. Set_Left_Limit (Expr, Eval_Expr_Keep_Orig (Get_Left_Limit (Expr), True)); Set_Right_Limit (Expr, Eval_Expr_Keep_Orig (Get_Right_Limit (Expr), True)); return Expr; when Iir_Kind_Integer_Subtype_Definition | Iir_Kind_Floating_Subtype_Definition | Iir_Kind_Enumeration_Type_Definition | Iir_Kind_Enumeration_Subtype_Definition | Iir_Kind_Physical_Subtype_Definition => Expr := Get_Range_Constraint (Expr); when Iir_Kind_Range_Array_Attribute | Iir_Kind_Reverse_Range_Array_Attribute => declare Prefix : Iir; Res : Iir; begin Prefix := Get_Prefix (Expr); if Get_Kind (Prefix) /= Iir_Kind_Array_Subtype_Definition then Prefix := Get_Type (Prefix); end if; if Get_Kind (Prefix) /= Iir_Kind_Array_Subtype_Definition then -- Unconstrained object. return Null_Iir; end if; Expr := Get_Nth_Element (Get_Index_Subtype_List (Prefix), Natural (Eval_Pos (Get_Parameter (Expr))) - 1); if Kind = Iir_Kind_Reverse_Range_Array_Attribute then Expr := Eval_Static_Range (Expr); Res := Create_Iir (Iir_Kind_Range_Expression); Location_Copy (Res, Expr); Set_Type (Res, Get_Type (Expr)); case Get_Direction (Expr) is when Iir_To => Set_Direction (Res, Iir_Downto); when Iir_Downto => Set_Direction (Res, Iir_To); end case; Set_Left_Limit (Res, Get_Right_Limit (Expr)); Set_Right_Limit (Res, Get_Left_Limit (Expr)); Set_Range_Origin (Res, Rng); Set_Expr_Staticness (Res, Get_Expr_Staticness (Expr)); return Res; end if; end; when Iir_Kind_Subtype_Declaration | Iir_Kind_Base_Attribute => Expr := Get_Type (Expr); when Iir_Kind_Type_Declaration => Expr := Get_Type_Definition (Expr); when Iir_Kind_Simple_Name | Iir_Kind_Selected_Name => Expr := Get_Named_Entity (Expr); when others => Error_Kind ("eval_static_range", Expr); end case; end loop; end Eval_Static_Range; function Eval_Range (Arange : Iir) return Iir is Res : Iir; begin Res := Eval_Static_Range (Arange); if Res /= Arange and then Get_Range_Origin (Res) /= Arange then return Build_Constant_Range (Res, Arange); else return Res; end if; end Eval_Range; function Eval_Range_If_Static (Arange : Iir) return Iir is begin if Get_Expr_Staticness (Arange) /= Locally then return Arange; else return Eval_Range (Arange); end if; end Eval_Range_If_Static; -- Return the range constraint of a discrete range. function Eval_Discrete_Range_Expression (Constraint : Iir) return Iir is Res : Iir; begin Res := Eval_Static_Range (Constraint); if Res = Null_Iir then Error_Kind ("eval_discrete_range_expression", Constraint); else return Res; end if; end Eval_Discrete_Range_Expression; function Eval_Discrete_Range_Left (Constraint : Iir) return Iir is Range_Expr : Iir; begin Range_Expr := Eval_Discrete_Range_Expression (Constraint); return Get_Left_Limit (Range_Expr); end Eval_Discrete_Range_Left; procedure Eval_Operator_Symbol_Name (Id : Name_Id) is begin Image (Id); Nam_Buffer (2 .. Nam_Length + 1) := Nam_Buffer (1 .. Nam_Length); Nam_Buffer (1) := '"'; --" Nam_Length := Nam_Length + 2; Nam_Buffer (Nam_Length) := '"'; --" end Eval_Operator_Symbol_Name; procedure Eval_Simple_Name (Id : Name_Id) is begin -- LRM 14.1 -- E'SIMPLE_NAME -- Result: [...] but with apostrophes (in the case of a character -- literal) if Is_Character (Id) then Nam_Buffer (1) := '''; Nam_Buffer (2) := Get_Character (Id); Nam_Buffer (3) := '''; Nam_Length := 3; return; end if; case Id is when Std_Names.Name_Word_Operators | Std_Names.Name_First_Operator .. Std_Names.Name_Last_Operator => Eval_Operator_Symbol_Name (Id); return; when Std_Names.Name_Xnor | Std_Names.Name_Shift_Operators => if Flags.Vhdl_Std > Vhdl_87 then Eval_Operator_Symbol_Name (Id); return; end if; when others => null; end case; Image (Id); -- if Name_Buffer (1) = '\' then -- declare -- I : Natural; -- begin -- I := 2; -- while I <= Name_Length loop -- if Name_Buffer (I) = '\' then -- Name_Length := Name_Length + 1; -- Name_Buffer (I + 1 .. Name_Length) := -- Name_Buffer (I .. Name_Length - 1); -- I := I + 1; -- end if; -- I := I + 1; -- end loop; -- Name_Length := Name_Length + 1; -- Name_Buffer (Name_Length) := '\'; -- end; -- end if; end Eval_Simple_Name; function Compare_String_Literals (L, R : Iir) return Compare_Type is type Str_Info is record El : Iir; Id : String8_Id; Len : Nat32; List : Iir_List; end record; Literal_List : Iir_List; -- Fill Res from EL. This is used to speed up Lt and Eq operations. procedure Get_Info (Expr : Iir; Res : out Str_Info) is begin case Get_Kind (Expr) is when Iir_Kind_Simple_Aggregate => Res := Str_Info'(El => Expr, Id => Null_String8, Len => 0, List => Get_Simple_Aggregate_List (Expr)); Res.Len := Nat32 (Get_Nbr_Elements (Res.List)); when Iir_Kind_String_Literal8 => Res := Str_Info'(El => Expr, Id => Get_String8_Id (Expr), Len => Get_String_Length (Expr), List => Null_Iir_List); when others => Error_Kind ("sem_string_choice_range.get_info", Expr); end case; end Get_Info; -- Return the position of element IDX of STR. function Get_Pos (Str : Str_Info; Idx : Nat32) return Iir_Int32 is S : Iir; P : Nat32; begin case Get_Kind (Str.El) is when Iir_Kind_Simple_Aggregate => S := Get_Nth_Element (Str.List, Natural (Idx)); when Iir_Kind_String_Literal8 => P := Str_Table.Element_String8 (Str.Id, Idx + 1); S := Get_Nth_Element (Literal_List, Natural (P)); when others => Error_Kind ("sem_string_choice_range.get_pos", Str.El); end case; return Get_Enum_Pos (S); end Get_Pos; L_Info, R_Info : Str_Info; L_Pos, R_Pos : Iir_Int32; begin Get_Info (L, L_Info); Get_Info (R, R_Info); if L_Info.Len /= R_Info.Len then raise Internal_Error; end if; Literal_List := Get_Enumeration_Literal_List (Get_Base_Type (Get_Element_Subtype (Get_Type (L)))); for I in 0 .. L_Info.Len - 1 loop L_Pos := Get_Pos (L_Info, I); R_Pos := Get_Pos (R_Info, I); if L_Pos /= R_Pos then if L_Pos < R_Pos then return Compare_Lt; else return Compare_Gt; end if; end if; end loop; return Compare_Eq; end Compare_String_Literals; function Get_Path_Instance_Name_Suffix (Attr : Iir) return Path_Instance_Name_Type is -- Current path for name attributes. Path_Str : String_Acc := null; Path_Maxlen : Natural := 0; Path_Len : Natural; Path_Instance : Iir; procedure Deallocate is new Ada.Unchecked_Deallocation (Name => String_Acc, Object => String); procedure Path_Reset is begin Path_Len := 0; Path_Instance := Null_Iir; if Path_Maxlen = 0 then Path_Maxlen := 256; Path_Str := new String (1 .. Path_Maxlen); end if; end Path_Reset; procedure Path_Add (Str : String) is N_Len : Natural; N_Path : String_Acc; begin N_Len := Path_Maxlen; loop exit when Path_Len + Str'Length <= N_Len; N_Len := N_Len * 2; end loop; if N_Len /= Path_Maxlen then N_Path := new String (1 .. N_Len); N_Path (1 .. Path_Len) := Path_Str (1 .. Path_Len); Deallocate (Path_Str); Path_Str := N_Path; Path_Maxlen := N_Len; end if; Path_Str (Path_Len + 1 .. Path_Len + Str'Length) := Str; Path_Len := Path_Len + Str'Length; end Path_Add; procedure Path_Add_Type_Name (Atype : Iir) is Adecl : Iir; begin Adecl := Get_Type_Declarator (Atype); Image (Get_Identifier (Adecl)); Path_Add (Nam_Buffer (1 .. Nam_Length)); end Path_Add_Type_Name; procedure Path_Add_Signature (Subprg : Iir) is Chain : Iir; begin Path_Add ("["); Chain := Get_Interface_Declaration_Chain (Subprg); while Chain /= Null_Iir loop Path_Add_Type_Name (Get_Type (Chain)); Chain := Get_Chain (Chain); if Chain /= Null_Iir then Path_Add (","); end if; end loop; case Get_Kind (Subprg) is when Iir_Kind_Function_Declaration => Path_Add (" return "); Path_Add_Type_Name (Get_Return_Type (Subprg)); when others => null; end case; Path_Add ("]"); end Path_Add_Signature; procedure Path_Add_Name (N : Iir) is begin Eval_Simple_Name (Get_Identifier (N)); if Nam_Buffer (1) /= 'P' then -- Skip anonymous processes. Path_Add (Nam_Buffer (1 .. Nam_Length)); end if; end Path_Add_Name; procedure Path_Add_Element (El : Iir; Is_Instance : Boolean) is begin -- LRM 14.1 -- E'INSTANCE_NAME -- There is one full path instance element for each component -- instantiation, block statement, generate statemenent, process -- statement, or subprogram body in the design hierarchy between -- the top design entity and the named entity denoted by the -- prefix. -- -- E'PATH_NAME -- There is one path instance element for each component -- instantiation, block statement, generate statement, process -- statement, or subprogram body in the design hierarchy between -- the root design entity and the named entity denoted by the -- prefix. case Get_Kind (El) is when Iir_Kind_Library_Declaration => Path_Add (":"); Path_Add_Name (El); Path_Add (":"); when Iir_Kind_Package_Declaration | Iir_Kind_Package_Body => Path_Add_Element (Get_Library (Get_Design_File (Get_Design_Unit (El))), Is_Instance); Path_Add_Name (El); Path_Add (":"); when Iir_Kind_Entity_Declaration => Path_Instance := El; when Iir_Kind_Architecture_Body => Path_Instance := El; when Iir_Kind_Design_Unit => Path_Add_Element (Get_Library_Unit (El), Is_Instance); when Iir_Kind_Sensitized_Process_Statement | Iir_Kind_Process_Statement | Iir_Kind_Block_Statement => Path_Add_Element (Get_Parent (El), Is_Instance); Path_Add_Name (El); Path_Add (":"); when Iir_Kind_Function_Declaration | Iir_Kind_Procedure_Declaration => Path_Add_Element (Get_Parent (El), Is_Instance); Path_Add_Name (El); if Flags.Vhdl_Std >= Vhdl_02 then -- Add signature. Path_Add_Signature (El); end if; Path_Add (":"); when Iir_Kind_Procedure_Body => Path_Add_Element (Get_Subprogram_Specification (El), Is_Instance); when Iir_Kind_For_Generate_Statement => Path_Instance := El; when Iir_Kind_If_Generate_Statement => Path_Add_Element (Get_Parent (El), Is_Instance); Path_Add_Name (El); Path_Add (":"); when Iir_Kind_Generate_Statement_Body => declare Parent : constant Iir := Get_Parent (El); begin if Get_Kind (Parent) = Iir_Kind_For_Generate_Statement then Path_Instance := El; else Path_Add_Element (Parent, Is_Instance); end if; end; when Iir_Kinds_Sequential_Statement => Path_Add_Element (Get_Parent (El), Is_Instance); when others => Error_Kind ("path_add_element", El); end case; end Path_Add_Element; Prefix : constant Iir := Get_Named_Entity (Get_Prefix (Attr)); Is_Instance : constant Boolean := Get_Kind (Attr) = Iir_Kind_Instance_Name_Attribute; begin Path_Reset; -- LRM 14.1 -- E'PATH_NAME -- The local item name in E'PATH_NAME equals E'SIMPLE_NAME, unless -- E denotes a library, package, subprogram or label. In this -- latter case, the package based path or instance based path, -- as appropriate, will not contain a local item name. -- -- E'INSTANCE_NAME -- The local item name in E'INSTANCE_NAME equals E'SIMPLE_NAME, -- unless E denotes a library, package, subprogram, or label. In -- this latter case, the package based path or full instance based -- path, as appropriate, will not contain a local item name. case Get_Kind (Prefix) is when Iir_Kind_Constant_Declaration | Iir_Kind_Interface_Constant_Declaration | Iir_Kind_Iterator_Declaration | Iir_Kind_Variable_Declaration | Iir_Kind_Interface_Variable_Declaration | Iir_Kind_Signal_Declaration | Iir_Kind_Interface_Signal_Declaration | Iir_Kind_File_Declaration | Iir_Kind_Interface_File_Declaration | Iir_Kind_Type_Declaration | Iir_Kind_Subtype_Declaration => Path_Add_Element (Get_Parent (Prefix), Is_Instance); Path_Add_Name (Prefix); when Iir_Kind_Library_Declaration | Iir_Kinds_Library_Unit_Declaration | Iir_Kind_Function_Declaration | Iir_Kind_Procedure_Declaration | Iir_Kinds_Concurrent_Statement | Iir_Kinds_Sequential_Statement => Path_Add_Element (Prefix, Is_Instance); when others => Error_Kind ("get_path_instance_name_suffix", Prefix); end case; declare Result : constant Path_Instance_Name_Type := (Len => Path_Len, Path_Instance => Path_Instance, Suffix => Path_Str (1 .. Path_Len)); begin Deallocate (Path_Str); return Result; end; end Get_Path_Instance_Name_Suffix; end Evaluation;