-- -------------------------------------------------------------------- -- -- Copyright © 2008 by IEEE. All rights reserved. -- -- This source file is an essential part of IEEE Std 1076-2008, -- IEEE Standard VHDL Language Reference Manual. This source file may not be -- copied, sold, or included with software that is sold without written -- permission from the IEEE Standards Department. This source file may be -- copied for individual use between licensed users. This source file is -- provided on an AS IS basis. The IEEE disclaims ANY WARRANTY EXPRESS OR -- IMPLIED INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR USE -- FOR A PARTICULAR PURPOSE. The user of the source file shall indemnify -- and hold IEEE harmless from any damages or liability arising out of the -- use thereof. -- -- Title : Floating-point package (Generic package body) -- : -- Library : This package shall be compiled into a library -- : symbolically named IEEE. -- : -- Developers: Accellera VHDL-TC and IEEE P1076 Working Group -- : -- Purpose : This packages defines basic binary floating point -- : arithmetic functions -- : -- Note : This package may be modified to include additional data -- : required by tools, but it must in no way change the -- : external interfaces or simulation behavior of the -- : description. It is permissible to add comments and/or -- : attributes to the package declarations, but not to change -- : or delete any original lines of the package declaration. -- : The package body may be changed only in accordance with -- : the terms of Clause 16 of this standard. -- : -- -------------------------------------------------------------------- -- $Revision: 1220 $ -- $Date: 2008-04-10 17:16:09 +0930 (Thu, 10 Apr 2008) $ -- -------------------------------------------------------------------- package body float_generic_pkg is -- Author David Bishop (dbishop@vhdl.org) ----------------------------------------------------------------------------- -- type declarations ----------------------------------------------------------------------------- -- This deferred constant will tell you if the package body is synthesizable -- or implemented as real numbers, set to "true" if synthesizable. constant fphdlsynth_or_real : BOOLEAN := true; -- deferred constant -- types of boundary conditions type boundary_type is (normal, infinity, zero, denormal); -- null range array constant constant NAFP : UNRESOLVED_float (0 downto 1) := (others => '0'); constant NSLV : STD_ULOGIC_VECTOR (0 downto 1) := (others => '0'); -- Special version of "minimum" to do some boundary checking function mine (L, R : INTEGER) return INTEGER is begin -- function minimum if (L = INTEGER'low or R = INTEGER'low) then report float_generic_pkg'instance_name & " Unbounded number passed, was a literal used?" severity error; return 0; end if; return minimum (L, R); end function mine; -- Generates the base number for the exponent normalization offset. function gen_expon_base ( constant exponent_width : NATURAL) return SIGNED is variable result : SIGNED (exponent_width-1 downto 0); begin result := (others => '1'); result (exponent_width-1) := '0'; return result; end function gen_expon_base; -- Integer version of the "log2" command (contributed by Peter Ashenden) function log2 (A : NATURAL) return NATURAL is variable quotient : NATURAL; variable result : NATURAL := 0; begin quotient := A / 2; while quotient > 0 loop quotient := quotient / 2; result := result + 1; end loop; return result; end function log2; -- Function similar to the ILOGB function in MATH_REAL function log2 (A : REAL) return INTEGER is variable Y : REAL; variable N : INTEGER := 0; begin if (A = 1.0 or A = 0.0) then return 0; end if; Y := A; if(A > 1.0) then while Y >= 2.0 loop Y := Y / 2.0; N := N + 1; end loop; return N; end if; -- O < Y < 1 while Y < 1.0 loop Y := Y * 2.0; N := N - 1; end loop; return N; end function log2; -- purpose: Test the boundary conditions of a Real number procedure test_boundary ( arg : in REAL; -- Input, converted to real constant fraction_width : in NATURAL; -- length of FP output fraction constant exponent_width : in NATURAL; -- length of FP exponent constant denormalize : in BOOLEAN := true; -- Use IEEE extended FP variable btype : out boundary_type; variable log2i : out INTEGER ) is constant expon_base : SIGNED (exponent_width-1 downto 0) := gen_expon_base(exponent_width); -- exponent offset constant exp_min : SIGNED (12 downto 0) := -(resize(expon_base, 13)) + 1; -- Minimum normal exponent constant exp_ext_min : SIGNED (12 downto 0) := exp_min - fraction_width; -- Minimum for denormal exponent variable log2arg : INTEGER; -- log2 of argument begin -- function test_boundary -- Check to see if the exponent is big enough -- Note that the argument is always an absolute value at this point. log2arg := log2(arg); if arg = 0.0 then btype := zero; elsif exponent_width > 11 then -- Exponent for Real is 11 (64 bit) btype := normal; else if log2arg < to_integer(exp_min) then if denormalize then if log2arg < to_integer(exp_ext_min) then btype := zero; else btype := denormal; end if; else if log2arg < to_integer(exp_min)-1 then btype := zero; else btype := normal; -- Can still represent this number end if; end if; elsif exponent_width < 11 then if log2arg > to_integer(expon_base)+1 then btype := infinity; else btype := normal; end if; else btype := normal; end if; end if; log2i := log2arg; end procedure test_boundary; -- purpose: Rounds depending on the state of the "round_style" -- Logic taken from -- "What Every Computer Scientist Should Know About Floating Point Arithmetic" -- by David Goldberg (1991) function check_round ( fract_in : STD_ULOGIC; -- input fraction sign : STD_ULOGIC; -- sign bit remainder : UNSIGNED; -- remainder to round from sticky : STD_ULOGIC := '0'; -- Sticky bit constant round_style : round_type) -- rounding type return BOOLEAN is variable result : BOOLEAN; variable or_reduced : STD_ULOGIC; begin -- function check_round result := false; if (remainder'length > 0) then -- if remainder in a null array or_reduced := or (remainder & sticky); rounding_case : case round_style is when round_nearest => -- Round Nearest, default mode if remainder(remainder'high) = '1' then -- round if (remainder'length > 1) then if ((or (remainder(remainder'high-1 downto remainder'low)) = '1' or sticky = '1') or fract_in = '1') then -- Make the bottom bit zero if possible if we are at 1/2 result := true; end if; else result := (fract_in = '1' or sticky = '1'); end if; end if; when round_inf => -- round up if positive, else truncate. if or_reduced = '1' and sign = '0' then result := true; end if; when round_neginf => -- round down if negative, else truncate. if or_reduced = '1' and sign = '1' then result := true; end if; when round_zero => -- round toward 0 Truncate null; end case rounding_case; end if; return result; end function check_round; -- purpose: Rounds depending on the state of the "round_style" -- unsigned version procedure fp_round ( fract_in : in UNSIGNED; -- input fraction expon_in : in SIGNED; -- input exponent fract_out : out UNSIGNED; -- output fraction expon_out : out SIGNED) is -- output exponent begin -- procedure fp_round if and (fract_in) = '1' then -- Fraction is all "1" expon_out := expon_in + 1; fract_out := to_unsigned(0, fract_out'high+1); else expon_out := expon_in; fract_out := fract_in + 1; end if; end procedure fp_round; -- This version of break_number doesn't call "classfp" procedure break_number ( -- internal version arg : in UNRESOLVED_float; fptyp : in valid_fpstate; denormalize : in BOOLEAN := true; fract : out UNSIGNED; expon : out SIGNED) is constant fraction_width : NATURAL := -arg'low; -- length of FP output fraction constant exponent_width : NATURAL := arg'high; -- length of FP output exponent constant expon_base : SIGNED (exponent_width-1 downto 0) := gen_expon_base(exponent_width); -- exponent offset variable exp : SIGNED (expon'range); begin fract (fraction_width-1 downto 0) := UNSIGNED (to_slv(arg(-1 downto -fraction_width))); breakcase : case fptyp is when pos_zero | neg_zero => fract (fraction_width) := '0'; exp := -expon_base; when pos_denormal | neg_denormal => if denormalize then exp := -expon_base; fract (fraction_width) := '0'; else exp := -expon_base - 1; fract (fraction_width) := '1'; end if; when pos_normal | neg_normal | pos_inf | neg_inf => fract (fraction_width) := '1'; exp := SIGNED(arg(exponent_width-1 downto 0)); exp (exponent_width-1) := not exp(exponent_width-1); when others => assert NO_WARNING report FLOAT_GENERIC_PKG'instance_name & "BREAK_NUMBER: " & "Meta state detected in fp_break_number process" severity warning; -- complete the case, if a NAN goes in, a NAN comes out. exp := (others => '1'); fract (fraction_width) := '1'; end case breakcase; expon := exp; end procedure break_number; -- purpose: floating point to UNSIGNED -- Used by to_integer, to_unsigned, and to_signed functions procedure float_to_unsigned ( arg : in UNRESOLVED_float; -- floating point input variable sign : out STD_ULOGIC; -- sign of output variable frac : out UNSIGNED; -- unsigned biased output constant denormalize : in BOOLEAN; -- turn on denormalization constant bias : in NATURAL; -- bias for fixed point constant round_style : in round_type) is -- rounding method constant fraction_width : INTEGER := -mine(arg'low, arg'low); -- length of FP output fraction constant exponent_width : INTEGER := arg'high; -- length of FP output exponent variable fract : UNSIGNED (frac'range); -- internal version of frac variable isign : STD_ULOGIC; -- internal version of sign variable exp : INTEGER; -- Exponent variable expon : SIGNED (exponent_width-1 downto 0); -- Vectorized exp -- Base to divide fraction by variable frac_shift : UNSIGNED (frac'high+3 downto 0); -- Fraction shifted variable shift : INTEGER; variable remainder : UNSIGNED (2 downto 0); variable round : STD_ULOGIC; -- round BIT begin isign := to_x01(arg(arg'high)); -- exponent /= '0', normal floating point expon := to_01(SIGNED(arg (exponent_width-1 downto 0)), 'X'); expon(exponent_width-1) := not expon(exponent_width-1); exp := to_integer (expon); -- Figure out the fraction fract := (others => '0'); -- fill with zero fract (fract'high) := '1'; -- Add the "1.0". shift := (fract'high-1) - exp; if fraction_width > fract'high then -- Can only use size-2 bits fract (fract'high-1 downto 0) := UNSIGNED (to_slv (arg(-1 downto -fract'high))); else -- can use all bits fract (fract'high-1 downto fract'high-fraction_width) := UNSIGNED (to_slv (arg(-1 downto -fraction_width))); end if; frac_shift := fract & "000"; if shift < 0 then -- Overflow fract := (others => '1'); else frac_shift := shift_right (frac_shift, shift); fract := frac_shift (frac_shift'high downto 3); remainder := frac_shift (2 downto 0); -- round (round_zero will bypass this and truncate) case round_style is when round_nearest => round := remainder(2) and (fract (0) or (or (remainder (1 downto 0)))); when round_inf => round := remainder(2) and not isign; when round_neginf => round := remainder(2) and isign; when others => round := '0'; end case; if round = '1' then fract := fract + 1; end if; end if; frac := fract; sign := isign; end procedure float_to_unsigned; -- purpose: returns a part of a vector, this function is here because -- or (fractr (to_integer(shiftx) downto 0)); -- can't be synthesized in some synthesis tools. function smallfract ( arg : UNSIGNED; shift : NATURAL) return STD_ULOGIC is variable orx : STD_ULOGIC; begin orx := arg(shift); for i in arg'range loop if i < shift then orx := arg(i) or orx; end if; end loop; return orx; end function smallfract; --------------------------------------------------------------------------- -- Visible functions --------------------------------------------------------------------------- -- purpose: converts the negative index to a positive one -- negative indices are illegal in 1164 and 1076.3 function to_sulv ( arg : UNRESOLVED_float) -- fp vector return STD_ULOGIC_VECTOR is variable result : STD_ULOGIC_VECTOR (arg'length-1 downto 0); begin -- function to_std_ulogic_vector if arg'length < 1 then return NSLV; end if; result := STD_ULOGIC_VECTOR (arg); return result; end function to_sulv; -- Converts an fp into an SULV function to_slv (arg : UNRESOLVED_float) return STD_LOGIC_VECTOR is begin return to_sulv (arg); end function to_slv; -- purpose: normalizes a floating point number -- This version assumes an "unsigned" input with function normalize ( fract : UNRESOLVED_UNSIGNED; -- fraction, unnormalized expon : UNRESOLVED_SIGNED; -- exponent, normalized by -1 sign : STD_ULOGIC; -- sign BIT sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) constant exponent_width : NATURAL := float_exponent_width; -- size of output exponent constant fraction_width : NATURAL := float_fraction_width; -- size of output fraction constant round_style : round_type := float_round_style; -- rounding option constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP constant nguard : NATURAL := float_guard_bits) -- guard bits return UNRESOLVED_float is variable sfract : UNSIGNED (fract'high downto 0); -- shifted fraction variable rfract : UNSIGNED (fraction_width-1 downto 0); -- fraction variable exp : SIGNED (exponent_width+1 downto 0); -- exponent variable rexp : SIGNED (exponent_width+1 downto 0); -- result exponent variable rexpon : UNSIGNED (exponent_width-1 downto 0); -- exponent variable result : UNRESOLVED_float (exponent_width downto -fraction_width); -- result variable shiftr : INTEGER; -- shift amount variable stickyx : STD_ULOGIC; -- version of sticky constant expon_base : SIGNED (exponent_width-1 downto 0) := gen_expon_base(exponent_width); -- exponent offset variable round, zerores, infres : BOOLEAN; begin -- function normalize zerores := false; infres := false; round := false; shiftr := find_leftmost (to_01(fract), '1') -- Find the first "1" - fraction_width - nguard; -- subtract the length we want exp := resize (expon, exp'length) + shiftr; if (or (fract) = '0') then -- Zero zerores := true; elsif ((exp <= -resize(expon_base, exp'length)-1) and denormalize) or ((exp < -resize(expon_base, exp'length)-1) and not denormalize) then if (exp >= -resize(expon_base, exp'length)-fraction_width-1) and denormalize then exp := -resize(expon_base, exp'length)-1; shiftr := -to_integer (expon + expon_base); -- new shift else -- return zero zerores := true; end if; elsif (exp > expon_base-1) then -- infinity infres := true; end if; if zerores then result := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); elsif infres then result := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); else sfract := fract srl shiftr; -- shift if shiftr > 0 then -- stickyx := sticky or (or (fract (shiftr-1 downto 0))); stickyx := sticky or smallfract (fract, shiftr-1); else stickyx := sticky; end if; if nguard > 0 then round := check_round ( fract_in => sfract (nguard), sign => sign, remainder => sfract(nguard-1 downto 0), sticky => stickyx, round_style => round_style); end if; if round then fp_round(fract_in => sfract (fraction_width-1+nguard downto nguard), expon_in => exp(rexp'range), fract_out => rfract, expon_out => rexp); else rfract := sfract (fraction_width-1+nguard downto nguard); rexp := exp(rexp'range); end if; -- result rexpon := UNSIGNED (rexp(exponent_width-1 downto 0)); rexpon (exponent_width-1) := not rexpon(exponent_width-1); result (rexpon'range) := UNRESOLVED_float(rexpon); result (-1 downto -fraction_width) := UNRESOLVED_float(rfract); end if; result (exponent_width) := sign; -- sign BIT return result; end function normalize; -- purpose: normalizes a floating point number -- This version assumes a "ufixed" input function normalize ( fract : UNRESOLVED_ufixed; -- unsigned fixed point expon : UNRESOLVED_SIGNED; -- exponent, normalized by -1 sign : STD_ULOGIC; -- sign bit sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) constant exponent_width : NATURAL := float_exponent_width; -- size of output exponent constant fraction_width : NATURAL := float_fraction_width; -- size of output fraction constant round_style : round_type := float_round_style; -- rounding option constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP constant nguard : NATURAL := float_guard_bits) -- guard bits return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width); variable arguns : UNSIGNED (fract'high + fraction_width + nguard downto 0) := (others => '0'); begin -- function normalize arguns (arguns'high downto maximum (arguns'high-fract'length+1, 0)) := UNSIGNED (to_slv (fract)); result := normalize (fract => arguns, expon => expon, sign => sign, sticky => sticky, fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => nguard); return result; end function normalize; -- purpose: normalizes a floating point number -- This version assumes a "ufixed" input with a "size_res" input function normalize ( fract : UNRESOLVED_ufixed; -- unsigned fixed point expon : UNRESOLVED_SIGNED; -- exponent, normalized by -1 sign : STD_ULOGIC; -- sign bit sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) size_res : UNRESOLVED_float; -- used for sizing only constant round_style : round_type := float_round_style; -- rounding option constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP constant nguard : NATURAL := float_guard_bits) -- guard bits return UNRESOLVED_float is constant fraction_width : NATURAL := -size_res'low; constant exponent_width : NATURAL := size_res'high; variable result : UNRESOLVED_float (exponent_width downto -fraction_width); variable arguns : UNSIGNED (fract'high + fraction_width + nguard downto 0) := (others => '0'); begin -- function normalize arguns (arguns'high downto maximum (arguns'high-fract'length+1, 0)) := UNSIGNED (to_slv (fract)); result := normalize (fract => arguns, expon => expon, sign => sign, sticky => sticky, fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => nguard); return result; end function normalize; -- Regular "normalize" function with a "size_res" input. function normalize ( fract : UNRESOLVED_UNSIGNED; -- unsigned expon : UNRESOLVED_SIGNED; -- exponent - 1, normalized sign : STD_ULOGIC; -- sign bit sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) size_res : UNRESOLVED_float; -- used for sizing only constant round_style : round_type := float_round_style; -- rounding option constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP constant nguard : NATURAL := float_guard_bits) -- guard bits return UNRESOLVED_float is begin return normalize (fract => fract, expon => expon, sign => sign, sticky => sticky, fraction_width => -size_res'low, exponent_width => size_res'high, round_style => round_style, denormalize => denormalize, nguard => nguard); end function normalize; -- Returns the class which X falls into function Classfp ( x : UNRESOLVED_float; -- floating point input check_error : BOOLEAN := float_check_error) -- check for errors return valid_fpstate is constant fraction_width : INTEGER := -mine(x'low, x'low); -- length of FP output fraction constant exponent_width : INTEGER := x'high; -- length of FP output exponent variable arg : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- classfp if (arg'length < 1 or fraction_width < 3 or exponent_width < 3 or x'left < x'right) then report FLOAT_GENERIC_PKG'instance_name & "CLASSFP: " & "Floating point number detected with a bad range" severity error; return isx; end if; -- Check for "X". arg := to_01 (x, 'X'); if (arg(0) = 'X') then return isx; -- If there is an X in the number -- Special cases, check for illegal number elsif check_error and (and (STD_ULOGIC_VECTOR (arg (exponent_width-1 downto 0))) = '1') then -- Exponent is all "1". if or (to_slv (arg (-1 downto -fraction_width))) /= '0' then -- Fraction must be all "0" or this is not a number. if (arg(-1) = '1') then -- From "W. Khan - IEEE standard return nan; -- 754 binary FP Signaling nan (Not a number) else return quiet_nan; end if; -- Check for infinity elsif arg(exponent_width) = '0' then return pos_inf; -- Positive infinity else return neg_inf; -- Negative infinity end if; -- check for "0" elsif or (STD_LOGIC_VECTOR (arg (exponent_width-1 downto 0))) = '0' then -- Exponent is all "0" if or (to_slv (arg (-1 downto -fraction_width))) = '0' then -- Fraction is all "0" if arg(exponent_width) = '0' then return pos_zero; -- Zero else return neg_zero; end if; else if arg(exponent_width) = '0' then return pos_denormal; -- Denormal number (ieee extended fp) else return neg_denormal; end if; end if; else if arg(exponent_width) = '0' then return pos_normal; -- Normal FP number else return neg_normal; end if; end if; end function Classfp; procedure break_number ( arg : in UNRESOLVED_float; denormalize : in BOOLEAN := float_denormalize; check_error : in BOOLEAN := float_check_error; fract : out UNRESOLVED_UNSIGNED; expon : out UNRESOLVED_SIGNED; sign : out STD_ULOGIC) is constant fraction_width : NATURAL := -mine(arg'low, arg'low); -- length of FP output fraction variable fptyp : valid_fpstate; begin fptyp := Classfp (arg, check_error); sign := to_x01(arg(arg'high)); break_number ( arg => arg, fptyp => fptyp, denormalize => denormalize, fract => fract, expon => expon); end procedure break_number; procedure break_number ( arg : in UNRESOLVED_float; denormalize : in BOOLEAN := float_denormalize; check_error : in BOOLEAN := float_check_error; fract : out UNRESOLVED_ufixed; -- 1 downto -fraction_width expon : out UNRESOLVED_SIGNED; -- exponent_width-1 downto 0 sign : out STD_ULOGIC) is constant fraction_width : NATURAL := -mine(arg'low, arg'low); -- length of FP output fraction variable fptyp : valid_fpstate; variable ufract : UNSIGNED (fraction_width downto 0); -- unsigned fraction begin fptyp := Classfp (arg, check_error); sign := to_x01(arg(arg'high)); break_number ( arg => arg, fptyp => fptyp, denormalize => denormalize, fract => ufract, expon => expon); fract (0 downto -fraction_width) := ufixed (ufract); end procedure break_number; -- Arithmetic functions function "abs" ( arg : UNRESOLVED_float) -- floating point input return UNRESOLVED_float is variable result : UNRESOLVED_float (arg'range); -- result begin if (arg'length > 0) then result := to_01 (arg, 'X'); result (arg'high) := '0'; -- set the sign bit to positive return result; else return NAFP; end if; end function "abs"; -- IEEE 754 "negative" function function "-" ( arg : UNRESOLVED_float) -- floating point input return UNRESOLVED_float is variable result : UNRESOLVED_float (arg'range); -- result begin if (arg'length > 0) then result := to_01 (arg, 'X'); result (arg'high) := not result (arg'high); -- invert sign bit return result; else return NAFP; end if; end function "-"; -- Addition, adds two floating point numbers function add ( l, r : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; -- rounding option constant guard : NATURAL := float_guard_bits; -- number of guard bits constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent constant addguard : NATURAL := guard; -- add one guard bit variable lfptype, rfptype : valid_fpstate; variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); variable fractl, fractr : UNSIGNED (fraction_width+1+addguard downto 0); -- fractions variable fractc, fracts : UNSIGNED (fractl'range); -- constant and shifted variables variable urfract, ulfract : UNSIGNED (fraction_width downto 0); variable ufract : UNSIGNED (fraction_width+1+addguard downto 0); variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents variable rexpon : SIGNED (exponent_width downto 0); -- result exponent variable shiftx : SIGNED (exponent_width downto 0); -- shift fractions variable sign : STD_ULOGIC; -- sign of the output variable leftright : BOOLEAN; -- left or right used variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); variable sticky : STD_ULOGIC; -- Holds precision for rounding begin -- addition if (fraction_width = 0 or l'length < 7 or r'length < 7) then lfptype := isx; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); end if; if (lfptype = isx or rfptype = isx) then fpresult := (others => 'X'); elsif (lfptype = nan or lfptype = quiet_nan or rfptype = nan or rfptype = quiet_nan) -- Return quiet NAN, IEEE754-1985-7.1,1 or (lfptype = pos_inf and rfptype = neg_inf) or (lfptype = neg_inf and rfptype = pos_inf) then -- Return quiet NAN, IEEE754-1985-7.1,2 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (lfptype = pos_inf or rfptype = pos_inf) then -- x + inf = inf fpresult := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (lfptype = neg_inf or rfptype = neg_inf) then -- x - inf = -inf fpresult := neg_inffp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (lfptype = neg_zero and rfptype = neg_zero) then -- -0 + -0 = -0 fpresult := neg_zerofp (fraction_width => fraction_width, exponent_width => exponent_width); else lresize := resize (arg => to_x01(l), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); lfptype := classfp (lresize, false); -- errors already checked rresize := resize (arg => to_x01(r), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); rfptype := classfp (rresize, false); -- errors already checked break_number ( arg => lresize, fptyp => lfptype, denormalize => denormalize, fract => ulfract, expon => exponl); fractl := (others => '0'); fractl (fraction_width+addguard downto addguard) := ulfract; break_number ( arg => rresize, fptyp => rfptype, denormalize => denormalize, fract => urfract, expon => exponr); fractr := (others => '0'); fractr (fraction_width+addguard downto addguard) := urfract; shiftx := (exponl(exponent_width-1) & exponl) - exponr; if shiftx < -fractl'high then rexpon := exponr(exponent_width-1) & exponr; fractc := fractr; fracts := (others => '0'); -- add zero leftright := false; sticky := or (fractl); elsif shiftx < 0 then shiftx := - shiftx; fracts := shift_right (fractl, to_integer(shiftx)); fractc := fractr; rexpon := exponr(exponent_width-1) & exponr; leftright := false; -- sticky := or (fractl (to_integer(shiftx) downto 0)); sticky := smallfract (fractl, to_integer(shiftx)); elsif shiftx = 0 then rexpon := exponl(exponent_width-1) & exponl; sticky := '0'; if fractr > fractl then fractc := fractr; fracts := fractl; leftright := false; else fractc := fractl; fracts := fractr; leftright := true; end if; elsif shiftx > fractr'high then rexpon := exponl(exponent_width-1) & exponl; fracts := (others => '0'); -- add zero fractc := fractl; leftright := true; sticky := or (fractr); elsif shiftx > 0 then fracts := shift_right (fractr, to_integer(shiftx)); fractc := fractl; rexpon := exponl(exponent_width-1) & exponl; leftright := true; -- sticky := or (fractr (to_integer(shiftx) downto 0)); sticky := smallfract (fractr, to_integer(shiftx)); end if; -- add fracts (0) := fracts (0) or sticky; -- Or the sticky bit into the LSB if l(l'high) = r(r'high) then ufract := fractc + fracts; sign := l(l'high); else -- signs are different ufract := fractc - fracts; -- always positive result if leftright then -- Figure out which sign to use sign := l(l'high); else sign := r(r'high); end if; end if; if or (ufract) = '0' then sign := '0'; -- IEEE 854, 6.3, paragraph 2. end if; -- normalize fpresult := normalize (fract => ufract, expon => rexpon, sign => sign, sticky => sticky, fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => addguard); end if; return fpresult; end function add; -- Subtraction, Calls "add". function subtract ( l, r : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; -- rounding option constant guard : NATURAL := float_guard_bits; -- number of guard bits constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is variable negr : UNRESOLVED_float (r'range); -- negative version of r begin negr := -r; -- r := -r return add (l => l, r => negr, round_style => round_style, guard => guard, check_error => check_error, denormalize => denormalize); end function subtract; -- Floating point multiply function multiply ( l, r : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; -- rounding option constant guard : NATURAL := float_guard_bits; -- number of guard bits constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent constant multguard : NATURAL := guard; -- guard bits variable lfptype, rfptype : valid_fpstate; variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); variable fractl, fractr : UNSIGNED (fraction_width downto 0); -- fractions variable rfract : UNSIGNED ((2*(fraction_width))+1 downto 0); -- result fraction variable sfract : UNSIGNED (fraction_width+1+multguard downto 0); -- result fraction variable shifty : INTEGER; -- denormal shift variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents variable rexpon : SIGNED (exponent_width+1 downto 0); -- result exponent variable fp_sign : STD_ULOGIC; -- sign of result variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); variable sticky : STD_ULOGIC; -- Holds precision for rounding begin -- multiply if (fraction_width = 0 or l'length < 7 or r'length < 7) then lfptype := isx; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); end if; if (lfptype = isx or rfptype = isx) then fpresult := (others => 'X'); elsif ((lfptype = nan or lfptype = quiet_nan or rfptype = nan or rfptype = quiet_nan)) then -- Return quiet NAN, IEEE754-1985-7.1,1 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (((lfptype = pos_inf or lfptype = neg_inf) and (rfptype = pos_zero or rfptype = neg_zero)) or ((rfptype = pos_inf or rfptype = neg_inf) and (lfptype = pos_zero or lfptype = neg_zero))) then -- 0 * inf -- Return quiet NAN, IEEE754-1985-7.1,3 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (lfptype = pos_inf or rfptype = pos_inf or lfptype = neg_inf or rfptype = neg_inf) then -- x * inf = inf fpresult := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); -- figure out the sign fp_sign := l(l'high) xor r(r'high); -- figure out the sign fpresult (exponent_width) := fp_sign; else fp_sign := l(l'high) xor r(r'high); -- figure out the sign lresize := resize (arg => to_x01(l), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); lfptype := classfp (lresize, false); -- errors already checked rresize := resize (arg => to_x01(r), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); rfptype := classfp (rresize, false); -- errors already checked break_number ( arg => lresize, fptyp => lfptype, denormalize => denormalize, fract => fractl, expon => exponl); break_number ( arg => rresize, fptyp => rfptype, denormalize => denormalize, fract => fractr, expon => exponr); if (rfptype = pos_denormal or rfptype = neg_denormal) then shifty := fraction_width - find_leftmost(fractr, '1'); fractr := shift_left (fractr, shifty); elsif (lfptype = pos_denormal or lfptype = neg_denormal) then shifty := fraction_width - find_leftmost(fractl, '1'); fractl := shift_left (fractl, shifty); else shifty := 0; -- Note that a denormal number * a denormal number is always zero. end if; -- multiply -- add the exponents rexpon := resize (exponl, rexpon'length) + exponr - shifty + 1; rfract := fractl * fractr; -- Multiply the fraction sfract := rfract (rfract'high downto rfract'high - (fraction_width+1+multguard)); sticky := or (rfract (rfract'high-(fraction_width+1+multguard) downto 0)); -- normalize fpresult := normalize (fract => sfract, expon => rexpon, sign => fp_sign, sticky => sticky, fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => multguard); end if; return fpresult; end function multiply; function short_divide ( lx, rx : UNSIGNED) return UNSIGNED is -- This is a special divider for the floating point routines. -- For a true unsigned divider, "stages" needs to = lx'high constant stages : INTEGER := lx'high - rx'high; -- number of stages variable partial : UNSIGNED (lx'range); variable q : UNSIGNED (stages downto 0); variable partial_argl : SIGNED (rx'high + 2 downto 0); variable partial_arg : SIGNED (rx'high + 2 downto 0); begin partial := lx; for i in stages downto 0 loop partial_argl := resize ("0" & SIGNED (partial(lx'high downto i)), partial_argl'length); partial_arg := partial_argl - SIGNED ("0" & rx); if (partial_arg (partial_arg'high) = '1') then -- negative q(i) := '0'; else q(i) := '1'; partial (lx'high+i-stages downto lx'high+i-stages-rx'high) := UNSIGNED (partial_arg(rx'range)); end if; end loop; -- to make the output look like that of the unsigned IEEE divide. return resize (q, lx'length); end function short_divide; -- 1/X function. Needed for algorithm development. function reciprocal ( arg : UNRESOLVED_float; constant round_style : round_type := float_round_style; -- rounding option constant guard : NATURAL := float_guard_bits; -- number of guard bits constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(arg'low, arg'low); -- length of FP output fraction constant exponent_width : NATURAL := arg'high; -- length of FP output exponent constant divguard : NATURAL := guard; -- guard bits function onedivy ( arg : UNSIGNED) return UNSIGNED is variable q : UNSIGNED((2*arg'high)+1 downto 0); variable one : UNSIGNED (q'range); begin one := (others => '0'); one(one'high) := '1'; q := short_divide (one, arg); -- Unsigned divide return resize (q, arg'length+1); end function onedivy; variable fptype : valid_fpstate; variable expon : SIGNED (exponent_width-1 downto 0); -- exponents variable denorm_offset : NATURAL range 0 to 2; variable fract : UNSIGNED (fraction_width downto 0); variable fractg : UNSIGNED (fraction_width+divguard downto 0); variable sfract : UNSIGNED (fraction_width+1+divguard downto 0); -- result fraction variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- reciprocal fptype := classfp(arg, check_error); classcase : case fptype is when isx => fpresult := (others => 'X'); when nan | quiet_nan => -- Return quiet NAN, IEEE754-1985-7.1,1 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); when pos_inf | neg_inf => -- 1/inf, return 0 fpresult := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); when neg_zero | pos_zero => -- 1/0 report FLOAT_GENERIC_PKG'instance_name & "RECIPROCAL: Floating Point divide by zero" severity error; fpresult := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); when others => if (fptype = pos_denormal or fptype = neg_denormal) and ((arg (-1) or arg(-2)) /= '1') then -- 1/denormal = infinity, with the exception of 2**-expon_base fpresult := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); fpresult (exponent_width) := to_x01 (arg (exponent_width)); else break_number ( arg => arg, fptyp => fptype, denormalize => denormalize, fract => fract, expon => expon); fractg := (others => '0'); if (fptype = pos_denormal or fptype = neg_denormal) then -- The reciprocal of a denormal number is typically zero, -- except for two special cases which are trapped here. if (to_x01(arg (-1)) = '1') then fractg (fractg'high downto divguard+1) := fract (fract'high-1 downto 0); -- Shift to not denormal denorm_offset := 1; -- add 1 to exponent compensate else -- arg(-2) = '1' fractg (fractg'high downto divguard+2) := fract (fract'high-2 downto 0); -- Shift to not denormal denorm_offset := 2; -- add 2 to exponent compensate end if; else fractg (fractg'high downto divguard) := fract; denorm_offset := 0; end if; expon := - expon - 3 + denorm_offset; sfract := onedivy (fractg); -- normalize fpresult := normalize (fract => sfract, expon => expon, sign => arg(exponent_width), sticky => '1', fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => divguard); end if; end case classcase; return fpresult; end function reciprocal; -- floating point division function divide ( l, r : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; -- rounding option constant guard : NATURAL := float_guard_bits; -- number of guard bits constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent constant divguard : NATURAL := guard; -- division guard bits variable lfptype, rfptype : valid_fpstate; variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); variable ulfract, urfract : UNSIGNED (fraction_width downto 0); variable fractl : UNSIGNED ((2*(fraction_width+divguard)+1) downto 0); -- left variable fractr : UNSIGNED (fraction_width+divguard downto 0); -- right variable rfract : UNSIGNED (fractl'range); -- result fraction variable sfract : UNSIGNED (fraction_width+1+divguard downto 0); -- result fraction variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents variable rexpon : SIGNED (exponent_width+1 downto 0); -- result exponent variable fp_sign, sticky : STD_ULOGIC; -- sign of result variable shifty, shiftx : INTEGER; -- denormal number shift variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- divide if (fraction_width = 0 or l'length < 7 or r'length < 7) then lfptype := isx; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); end if; classcase : case rfptype is when isx => fpresult := (others => 'X'); when nan | quiet_nan => -- Return quiet NAN, IEEE754-1985-7.1,1 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); when pos_inf | neg_inf => if lfptype = pos_inf or lfptype = neg_inf -- inf / inf or lfptype = quiet_nan or lfptype = nan then -- Return quiet NAN, IEEE754-1985-7.1,4 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); else -- x / inf = 0 fpresult := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); fp_sign := l(l'high) xor r(r'high); -- sign fpresult (fpresult'high) := fp_sign; -- sign end if; when pos_zero | neg_zero => if lfptype = pos_zero or lfptype = neg_zero -- 0 / 0 or lfptype = quiet_nan or lfptype = nan then -- Return quiet NAN, IEEE754-1985-7.1,4 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); else report float_generic_pkg'instance_name & "DIVIDE: Floating Point divide by zero" severity error; -- Infinity, define in 754-1985-7.2 fpresult := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); fp_sign := l(l'high) xor r(r'high); -- sign fpresult (fpresult'high) := fp_sign; -- sign end if; when others => classcase2 : case lfptype is when isx => fpresult := (others => 'X'); when nan | quiet_nan => -- Return quiet NAN, IEEE754-1985-7.1,1 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); when pos_inf | neg_inf => -- inf / x = inf fpresult := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); fp_sign := l(l'high) xor r(r'high); -- sign fpresult(exponent_width) := fp_sign; when pos_zero | neg_zero => -- 0 / X = 0 fpresult := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); fp_sign := l(l'high) xor r(r'high); -- sign fpresult(exponent_width) := fp_sign; when others => fp_sign := l(l'high) xor r(r'high); -- sign lresize := resize (arg => to_x01(l), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); lfptype := classfp (lresize, false); -- errors already checked rresize := resize (arg => to_x01(r), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); rfptype := classfp (rresize, false); -- errors already checked break_number ( arg => lresize, fptyp => lfptype, denormalize => denormalize, fract => ulfract, expon => exponl); -- right side break_number ( arg => rresize, fptyp => rfptype, denormalize => denormalize, fract => urfract, expon => exponr); -- Compute the exponent rexpon := resize (exponl, rexpon'length) - exponr - 2; if (rfptype = pos_denormal or rfptype = neg_denormal) then -- Do the shifting here not after. That way we have a smaller -- shifter, and need a smaller divider, because the top -- bit in the divisor will always be a "1". shifty := fraction_width - find_leftmost(urfract, '1'); urfract := shift_left (urfract, shifty); rexpon := rexpon + shifty; end if; fractr := (others => '0'); fractr (fraction_width+divguard downto divguard) := urfract; if (lfptype = pos_denormal or lfptype = neg_denormal) then shiftx := fraction_width - find_leftmost(ulfract, '1'); ulfract := shift_left (ulfract, shiftx); rexpon := rexpon - shiftx; end if; fractl := (others => '0'); fractl (fractl'high downto fractl'high-fraction_width) := ulfract; -- divide rfract := short_divide (fractl, fractr); -- unsigned divide sfract := rfract (sfract'range); -- lower bits sticky := '1'; -- normalize fpresult := normalize (fract => sfract, expon => rexpon, sign => fp_sign, sticky => sticky, fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => divguard); end case classcase2; end case classcase; return fpresult; end function divide; -- division by a power of 2 function dividebyp2 ( l, r : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; -- rounding option constant guard : NATURAL := float_guard_bits; -- number of guard bits constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent variable lfptype, rfptype : valid_fpstate; variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); variable ulfract, urfract : UNSIGNED (fraction_width downto 0); variable exponl, exponr : SIGNED(exponent_width-1 downto 0); -- exponents variable rexpon : SIGNED(exponent_width downto 0); -- result exponent variable fp_sign : STD_ULOGIC; -- sign of result variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- divisionbyp2 if (fraction_width = 0 or l'length < 7 or r'length < 7) then lfptype := isx; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); end if; classcase : case rfptype is when isx => fpresult := (others => 'X'); when nan | quiet_nan => -- Return quiet NAN, IEEE754-1985-7.1,1 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); when pos_inf | neg_inf => if lfptype = pos_inf or lfptype = neg_inf then -- inf / inf -- Return quiet NAN, IEEE754-1985-7.1,4 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); else -- x / inf = 0 fpresult := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); fp_sign := l(l'high) xor r(r'high); -- sign fpresult (fpresult'high) := fp_sign; -- sign end if; when pos_zero | neg_zero => if lfptype = pos_zero or lfptype = neg_zero then -- 0 / 0 -- Return quiet NAN, IEEE754-1985-7.1,4 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); else report FLOAT_GENERIC_PKG'instance_name & "DIVIDEBYP2: Floating Point divide by zero" severity error; -- Infinity, define in 754-1985-7.2 fpresult := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); fp_sign := l(l'high) xor r(r'high); -- sign fpresult (fpresult'high) := fp_sign; -- sign end if; when others => classcase2 : case lfptype is when isx => fpresult := (others => 'X'); when nan | quiet_nan => -- Return quiet NAN, IEEE754-1985-7.1,1 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); when pos_inf | neg_inf => -- inf / x = inf fpresult := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); fp_sign := l(l'high) xor r(r'high); -- sign fpresult (exponent_width) := fp_sign; -- sign when pos_zero | neg_zero => -- 0 / X = 0 fpresult := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); fp_sign := l(l'high) xor r(r'high); -- sign fpresult (exponent_width) := fp_sign; -- sign when others => fp_sign := l(l'high) xor r(r'high); -- sign lresize := resize (arg => to_x01(l), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); lfptype := classfp (lresize, false); -- errors already checked rresize := resize (arg => to_x01(r), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); rfptype := classfp (rresize, false); -- errors already checked break_number ( arg => lresize, fptyp => lfptype, denormalize => denormalize, fract => ulfract, expon => exponl); -- right side break_number ( arg => rresize, fptyp => rfptype, denormalize => denormalize, fract => urfract, expon => exponr); assert (or (urfract (fraction_width-1 downto 0)) = '0') report FLOAT_GENERIC_PKG'instance_name & "DIVIDEBYP2: " & "Dividebyp2 called with a non power of two divisor" severity error; rexpon := (exponl(exponl'high)&exponl) - (exponr(exponr'high)&exponr) - 1; -- normalize fpresult := normalize (fract => ulfract, expon => rexpon, sign => fp_sign, sticky => '1', fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => 0); end case classcase2; end case classcase; return fpresult; end function dividebyp2; -- Multiply accumulate result = l*r + c function mac ( l, r, c : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; -- rounding option constant guard : NATURAL := float_guard_bits; -- number of guard bits constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant fraction_width : NATURAL := -mine (mine(l'low, r'low), c'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum (maximum(l'high, r'high), c'high); -- length of FP output exponent variable lfptype, rfptype, cfptype : valid_fpstate; variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); variable fractl, fractr : UNSIGNED (fraction_width downto 0); -- fractions variable fractx : UNSIGNED (fraction_width+guard downto 0); variable fractc, fracts : UNSIGNED (fraction_width+1+guard downto 0); variable rfract : UNSIGNED ((2*(fraction_width))+1 downto 0); -- result fraction variable sfract, ufract : UNSIGNED (fraction_width+1+guard downto 0); -- result fraction variable exponl, exponr, exponc : SIGNED (exponent_width-1 downto 0); -- exponents variable rexpon, rexpon2 : SIGNED (exponent_width+1 downto 0); -- result exponent variable shifty : INTEGER; -- denormal shift variable shiftx : SIGNED (rexpon'range); -- shift fractions variable fp_sign : STD_ULOGIC; -- sign of result variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); variable cresize : UNRESOLVED_float (exponent_width downto -fraction_width - guard); variable leftright : BOOLEAN; -- left or right used variable sticky : STD_ULOGIC; -- Holds precision for rounding begin -- multiply if (fraction_width = 0 or l'length < 7 or r'length < 7 or c'length < 7) then lfptype := isx; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); cfptype := classfp (c, check_error); end if; if (lfptype = isx or rfptype = isx or cfptype = isx) then fpresult := (others => 'X'); elsif (lfptype = nan or lfptype = quiet_nan or rfptype = nan or rfptype = quiet_nan or cfptype = nan or cfptype = quiet_nan) then -- Return quiet NAN, IEEE754-1985-7.1,1 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (((lfptype = pos_inf or lfptype = neg_inf) and (rfptype = pos_zero or rfptype = neg_zero)) or ((rfptype = pos_inf or rfptype = neg_inf) and (lfptype = pos_zero or lfptype = neg_zero))) then -- 0 * inf -- Return quiet NAN, IEEE754-1985-7.1,3 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (lfptype = pos_inf or rfptype = pos_inf or lfptype = neg_inf or rfptype = neg_inf -- x * inf = inf or cfptype = neg_inf or cfptype = pos_inf) then -- x + inf = inf fpresult := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); -- figure out the sign fpresult (exponent_width) := l(l'high) xor r(r'high); else fp_sign := l(l'high) xor r(r'high); -- figure out the sign lresize := resize (arg => to_x01(l), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); lfptype := classfp (lresize, false); -- errors already checked rresize := resize (arg => to_x01(r), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); rfptype := classfp (rresize, false); -- errors already checked cresize := resize (arg => to_x01(c), exponent_width => exponent_width, fraction_width => -cresize'low, denormalize_in => denormalize, denormalize => denormalize); cfptype := classfp (cresize, false); -- errors already checked break_number ( arg => lresize, fptyp => lfptype, denormalize => denormalize, fract => fractl, expon => exponl); break_number ( arg => rresize, fptyp => rfptype, denormalize => denormalize, fract => fractr, expon => exponr); break_number ( arg => cresize, fptyp => cfptype, denormalize => denormalize, fract => fractx, expon => exponc); if (rfptype = pos_denormal or rfptype = neg_denormal) then shifty := fraction_width - find_leftmost(fractr, '1'); fractr := shift_left (fractr, shifty); elsif (lfptype = pos_denormal or lfptype = neg_denormal) then shifty := fraction_width - find_leftmost(fractl, '1'); fractl := shift_left (fractl, shifty); else shifty := 0; -- Note that a denormal number * a denormal number is always zero. end if; -- multiply rfract := fractl * fractr; -- Multiply the fraction -- add the exponents rexpon := resize (exponl, rexpon'length) + exponr - shifty + 1; shiftx := rexpon - exponc; if shiftx < -fractl'high then rexpon2 := resize (exponc, rexpon2'length); fractc := "0" & fractx; fracts := (others => '0'); sticky := or (rfract); elsif shiftx < 0 then shiftx := - shiftx; fracts := shift_right (rfract (rfract'high downto rfract'high - fracts'length+1), to_integer(shiftx)); fractc := "0" & fractx; rexpon2 := resize (exponc, rexpon2'length); leftright := false; sticky := or (rfract (to_integer(shiftx)+rfract'high - fracts'length downto 0)); elsif shiftx = 0 then rexpon2 := resize (exponc, rexpon2'length); sticky := or (rfract (rfract'high - fractc'length downto 0)); if rfract (rfract'high downto rfract'high - fractc'length+1) > fractx then fractc := "0" & fractx; fracts := rfract (rfract'high downto rfract'high - fracts'length+1); leftright := false; else fractc := rfract (rfract'high downto rfract'high - fractc'length+1); fracts := "0" & fractx; leftright := true; end if; elsif shiftx > fractx'high then rexpon2 := rexpon; fracts := (others => '0'); fractc := rfract (rfract'high downto rfract'high - fractc'length+1); leftright := true; sticky := or (fractx & rfract (rfract'high - fractc'length downto 0)); else -- fractx'high > shiftx > 0 rexpon2 := rexpon; fracts := "0" & shift_right (fractx, to_integer (shiftx)); fractc := rfract (rfract'high downto rfract'high - fractc'length+1); leftright := true; sticky := or (fractx (to_integer (shiftx) downto 0) & rfract (rfract'high - fractc'length downto 0)); end if; fracts (0) := fracts (0) or sticky; -- Or the sticky bit into the LSB if fp_sign = to_X01(c(c'high)) then ufract := fractc + fracts; fp_sign := fp_sign; else -- signs are different ufract := fractc - fracts; -- always positive result if leftright then -- Figure out which sign to use fp_sign := fp_sign; else fp_sign := c(c'high); end if; end if; -- normalize fpresult := normalize (fract => ufract, expon => rexpon2, sign => fp_sign, sticky => sticky, fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => guard); end if; return fpresult; end function mac; -- "rem" function function remainder ( l, r : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; -- rounding option constant guard : NATURAL := float_guard_bits; -- number of guard bits constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent constant divguard : NATURAL := guard; -- division guard bits variable lfptype, rfptype : valid_fpstate; variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); variable ulfract, urfract : UNSIGNED (fraction_width downto 0); variable fractr, fractl : UNSIGNED (fraction_width+divguard downto 0); -- right variable rfract : UNSIGNED (fractr'range); -- result fraction variable sfract : UNSIGNED (fraction_width+divguard downto 0); -- result fraction variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents variable rexpon : SIGNED (exponent_width downto 0); -- result exponent variable fp_sign : STD_ULOGIC; -- sign of result variable shifty : INTEGER; -- denormal number shift variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- remainder if (fraction_width = 0 or l'length < 7 or r'length < 7) then lfptype := isx; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); end if; if (lfptype = isx or rfptype = isx) then fpresult := (others => 'X'); elsif (lfptype = nan or lfptype = quiet_nan) or (rfptype = nan or rfptype = quiet_nan) -- Return quiet NAN, IEEE754-1985-7.1,1 or (lfptype = pos_inf or lfptype = neg_inf) -- inf rem x -- Return quiet NAN, IEEE754-1985-7.1,5 or (rfptype = pos_zero or rfptype = neg_zero) then -- x rem 0 -- Return quiet NAN, IEEE754-1985-7.1,5 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (rfptype = pos_inf or rfptype = neg_inf) then -- x rem inf = 0 fpresult := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (abs(l) < abs(r)) then fpresult := l; else fp_sign := to_X01(l(l'high)); -- sign lresize := resize (arg => to_x01(l), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); lfptype := classfp (lresize, false); -- errors already checked rresize := resize (arg => to_x01(r), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); rfptype := classfp (rresize, false); -- errors already checked fractl := (others => '0'); break_number ( arg => lresize, fptyp => lfptype, denormalize => denormalize, fract => ulfract, expon => exponl); fractl (fraction_width+divguard downto divguard) := ulfract; -- right side fractr := (others => '0'); break_number ( arg => rresize, fptyp => rfptype, denormalize => denormalize, fract => urfract, expon => exponr); fractr (fraction_width+divguard downto divguard) := urfract; rexpon := (exponr(exponr'high)&exponr); shifty := to_integer(exponl - rexpon); if (shifty > 0) then fractr := shift_right (fractr, shifty); rexpon := rexpon + shifty; end if; if (fractr /= 0) then -- rem rfract := fractl rem fractr; -- unsigned rem sfract := rfract (sfract'range); -- lower bits -- normalize fpresult := normalize (fract => sfract, expon => rexpon, sign => fp_sign, fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => divguard); else -- If we shift "fractr" so far that it becomes zero, return zero. fpresult := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); end if; end if; return fpresult; end function remainder; -- "mod" function function modulo ( l, r : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; -- rounding option constant guard : NATURAL := float_guard_bits; -- number of guard bits constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant fraction_width : NATURAL := - mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent variable lfptype, rfptype : valid_fpstate; variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); variable remres : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- remainder if (fraction_width = 0 or l'length < 7 or r'length < 7) then lfptype := isx; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); end if; if (lfptype = isx or rfptype = isx) then fpresult := (others => 'X'); elsif (lfptype = nan or lfptype = quiet_nan) or (rfptype = nan or rfptype = quiet_nan) -- Return quiet NAN, IEEE754-1985-7.1,1 or (lfptype = pos_inf or lfptype = neg_inf) -- inf rem x -- Return quiet NAN, IEEE754-1985-7.1,5 or (rfptype = pos_zero or rfptype = neg_zero) then -- x rem 0 -- Return quiet NAN, IEEE754-1985-7.1,5 fpresult := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (rfptype = pos_inf or rfptype = neg_inf) then -- x rem inf = 0 fpresult := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); else remres := remainder (l => abs(l), r => abs(r), round_style => round_style, guard => guard, check_error => false, denormalize => denormalize); -- MOD is the same as REM, but you do something different with -- negative values if (is_negative (l)) then remres := - remres; end if; if (is_negative (l) = is_negative (r) or remres = 0) then fpresult := remres; else fpresult := add (l => remres, r => r, round_style => round_style, guard => guard, check_error => false, denormalize => denormalize); end if; end if; return fpresult; end function modulo; -- Square root of a floating point number. Done using Newton's Iteration. function sqrt ( arg : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; constant guard : NATURAL := float_guard_bits; constant check_error : BOOLEAN := float_check_error; constant denormalize : BOOLEAN := float_denormalize) return UNRESOLVED_float is constant fraction_width : NATURAL := guard-arg'low; -- length of FP output fraction constant exponent_width : NATURAL := arg'high; -- length of FP output exponent variable sign : STD_ULOGIC; variable fpresult : float (arg'range); variable fptype : valid_fpstate; variable iexpon : SIGNED(exponent_width-1 downto 0); -- exponents variable expon : SIGNED(exponent_width downto 0); -- exponents variable ufact : ufixed (0 downto arg'low); variable fact : ufixed (2 downto -fraction_width); -- fraction variable resb : ufixed (fact'high+1 downto fact'low); begin -- square root fptype := Classfp (arg, check_error); classcase : case fptype is when isx => fpresult := (others => 'X'); when nan | quiet_nan | -- Return quiet NAN, IEEE754-1985-7.1,1 neg_normal | neg_denormal | neg_inf => -- sqrt (neg) -- Return quiet NAN, IEEE754-1985-7.1.6 fpresult := qnanfp (fraction_width => fraction_width-guard, exponent_width => exponent_width); when pos_inf => -- Sqrt (inf), return infinity fpresult := pos_inffp (fraction_width => fraction_width-guard, exponent_width => exponent_width); when pos_zero => -- return 0 fpresult := zerofp (fraction_width => fraction_width-guard, exponent_width => exponent_width); when neg_zero => -- IEEE754-1985-6.3 return -0 fpresult := neg_zerofp (fraction_width => fraction_width-guard, exponent_width => exponent_width); when others => break_number (arg => arg, denormalize => denormalize, check_error => false, fract => ufact, expon => iexpon, sign => sign); expon := resize (iexpon+1, expon'length); -- get exponent fact := resize (ufact, fact'high, fact'low); if (expon(0) = '1') then fact := fact sla 1; -- * 2.0 end if; expon := shift_right (expon, 1); -- exponent/2 -- Newton's iteration - root := (1 + arg) / 2 resb := (fact + 1) sra 1; for j in 0 to fraction_width/4 loop -- root := (root + (arg/root))/2 resb := resize (arg => (resb + (fact/resb)) sra 1, left_index => resb'high, right_index => resb'low, round_style => fixed_truncate, overflow_style => fixed_wrap); end loop; fpresult := normalize (fract => resb, expon => expon-1, sign => '0', exponent_width => arg'high, fraction_width => -arg'low, round_style => round_style, denormalize => denormalize, nguard => guard); end case classcase; return fpresult; end function sqrt; function Is_Negative (arg : UNRESOLVED_float) return BOOLEAN is -- Technically -0 should return "false", but I'm leaving that case out. begin return (to_x01(arg(arg'high)) = '1'); end function Is_Negative; -- compare functions -- =, /=, >=, <=, <, > function eq ( -- equal = l, r : UNRESOLVED_float; -- floating point input constant check_error : BOOLEAN := float_check_error; constant denormalize : BOOLEAN := float_denormalize) return BOOLEAN is variable lfptype, rfptype : valid_fpstate; variable is_equal, is_unordered : BOOLEAN; constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- equal if (fraction_width = 0 or l'length < 7 or r'length < 7) then return false; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); end if; if (lfptype = neg_zero or lfptype = pos_zero) and (rfptype = neg_zero or rfptype = pos_zero) then is_equal := true; else lresize := resize (arg => to_x01(l), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); rresize := resize (arg => to_x01(r), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); is_equal := (to_slv(lresize) = to_slv(rresize)); end if; if (check_error) then is_unordered := Unordered (x => l, y => r); else is_unordered := false; end if; return is_equal and not is_unordered; end function eq; function lt ( -- less than < l, r : UNRESOLVED_float; -- floating point input constant check_error : BOOLEAN := float_check_error; constant denormalize : BOOLEAN := float_denormalize) return BOOLEAN is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent variable lfptype, rfptype : valid_fpstate; variable expl, expr : UNSIGNED (exponent_width-1 downto 0); variable fractl, fractr : UNSIGNED (fraction_width-1 downto 0); variable is_less_than, is_unordered : BOOLEAN; variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin if (fraction_width = 0 or l'length < 7 or r'length < 7) then is_less_than := false; else lresize := resize (arg => to_x01(l), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); rresize := resize (arg => to_x01(r), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); if to_x01(l(l'high)) = to_x01(r(r'high)) then -- sign bits expl := UNSIGNED(lresize(exponent_width-1 downto 0)); expr := UNSIGNED(rresize(exponent_width-1 downto 0)); if expl = expr then fractl := UNSIGNED (to_slv(lresize(-1 downto -fraction_width))); fractr := UNSIGNED (to_slv(rresize(-1 downto -fraction_width))); if to_x01(l(l'high)) = '0' then -- positive number is_less_than := (fractl < fractr); else is_less_than := (fractl > fractr); -- negative end if; else if to_x01(l(l'high)) = '0' then -- positive number is_less_than := (expl < expr); else is_less_than := (expl > expr); -- negative end if; end if; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); if (lfptype = neg_zero and rfptype = pos_zero) then is_less_than := false; -- -0 < 0 returns false. else is_less_than := (to_x01(l(l'high)) > to_x01(r(r'high))); end if; end if; end if; if check_error then is_unordered := Unordered (x => l, y => r); else is_unordered := false; end if; return is_less_than and not is_unordered; end function lt; function gt ( -- greater than > l, r : UNRESOLVED_float; -- floating point input constant check_error : BOOLEAN := float_check_error; constant denormalize : BOOLEAN := float_denormalize) return BOOLEAN is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent variable lfptype, rfptype : valid_fpstate; variable expl, expr : UNSIGNED (exponent_width-1 downto 0); variable fractl, fractr : UNSIGNED (fraction_width-1 downto 0); variable is_greater_than : BOOLEAN; variable is_unordered : BOOLEAN; variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- greater_than if (fraction_width = 0 or l'length < 7 or r'length < 7) then is_greater_than := false; else lresize := resize (arg => to_x01(l), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); rresize := resize (arg => to_x01(r), exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => denormalize, denormalize => denormalize); if to_x01(l(l'high)) = to_x01(r(r'high)) then -- sign bits expl := UNSIGNED(lresize(exponent_width-1 downto 0)); expr := UNSIGNED(rresize(exponent_width-1 downto 0)); if expl = expr then fractl := UNSIGNED (to_slv(lresize(-1 downto -fraction_width))); fractr := UNSIGNED (to_slv(rresize(-1 downto -fraction_width))); if to_x01(l(l'high)) = '0' then -- positive number is_greater_than := fractl > fractr; else is_greater_than := fractl < fractr; -- negative end if; else if to_x01(l(l'high)) = '0' then -- positive number is_greater_than := expl > expr; else is_greater_than := expl < expr; -- negative end if; end if; else lfptype := classfp (l, check_error); rfptype := classfp (r, check_error); if (lfptype = pos_zero and rfptype = neg_zero) then is_greater_than := false; -- 0 > -0 returns false. else is_greater_than := to_x01(l(l'high)) < to_x01(r(r'high)); end if; end if; end if; if check_error then is_unordered := Unordered (x => l, y => r); else is_unordered := false; end if; return is_greater_than and not is_unordered; end function gt; -- purpose: /= function function ne ( -- not equal /= l, r : UNRESOLVED_float; constant check_error : BOOLEAN := float_check_error; constant denormalize : BOOLEAN := float_denormalize) return BOOLEAN is variable is_equal, is_unordered : BOOLEAN; begin is_equal := eq (l => l, r => r, check_error => false, denormalize => denormalize); if check_error then is_unordered := Unordered (x => l, y => r); else is_unordered := false; end if; return not (is_equal and not is_unordered); end function ne; function le ( -- less than or equal to <= l, r : UNRESOLVED_float; -- floating point input constant check_error : BOOLEAN := float_check_error; constant denormalize : BOOLEAN := float_denormalize) return BOOLEAN is variable is_greater_than, is_unordered : BOOLEAN; begin is_greater_than := gt (l => l, r => r, check_error => false, denormalize => denormalize); if check_error then is_unordered := Unordered (x => l, y => r); else is_unordered := false; end if; return not is_greater_than and not is_unordered; end function le; function ge ( -- greater than or equal to >= l, r : UNRESOLVED_float; -- floating point input constant check_error : BOOLEAN := float_check_error; constant denormalize : BOOLEAN := float_denormalize) return BOOLEAN is variable is_less_than, is_unordered : BOOLEAN; begin is_less_than := lt (l => l, r => r, check_error => false, denormalize => denormalize); if check_error then is_unordered := Unordered (x => l, y => r); else is_unordered := false; end if; return not is_less_than and not is_unordered; end function ge; function "?=" (L, R : UNRESOLVED_float) return STD_ULOGIC is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent variable lfptype, rfptype : valid_fpstate; variable is_equal, is_unordered : STD_ULOGIC; variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- ?= if (fraction_width = 0 or l'length < 7 or r'length < 7) then return 'X'; else lfptype := classfp (l, float_check_error); rfptype := classfp (r, float_check_error); end if; if (lfptype = neg_zero or lfptype = pos_zero) and (rfptype = neg_zero or rfptype = pos_zero) then is_equal := '1'; else lresize := resize (arg => l, exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => float_denormalize, denormalize => float_denormalize); rresize := resize (arg => r, exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => float_denormalize, denormalize => float_denormalize); is_equal := to_sulv(lresize) ?= to_sulv(rresize); end if; if (float_check_error) then if (lfptype = nan or lfptype = quiet_nan or rfptype = nan or rfptype = quiet_nan) then is_unordered := '1'; else is_unordered := '0'; end if; else is_unordered := '0'; end if; return is_equal and not is_unordered; end function "?="; function "?/=" (L, R : UNRESOLVED_float) return STD_ULOGIC is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent variable lfptype, rfptype : valid_fpstate; variable is_equal, is_unordered : STD_ULOGIC; variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- ?/= if (fraction_width = 0 or l'length < 7 or r'length < 7) then return 'X'; else lfptype := classfp (l, float_check_error); rfptype := classfp (r, float_check_error); end if; if (lfptype = neg_zero or lfptype = pos_zero) and (rfptype = neg_zero or rfptype = pos_zero) then is_equal := '1'; else lresize := resize (arg => l, exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => float_denormalize, denormalize => float_denormalize); rresize := resize (arg => r, exponent_width => exponent_width, fraction_width => fraction_width, denormalize_in => float_denormalize, denormalize => float_denormalize); is_equal := to_sulv(lresize) ?= to_sulv(rresize); end if; if (float_check_error) then if (lfptype = nan or lfptype = quiet_nan or rfptype = nan or rfptype = quiet_nan) then is_unordered := '1'; else is_unordered := '0'; end if; else is_unordered := '0'; end if; return not (is_equal and not is_unordered); end function "?/="; function "?>" (L, R : UNRESOLVED_float) return STD_ULOGIC is constant fraction_width : NATURAL := -mine(l'low, r'low); variable founddash : BOOLEAN := false; begin if (fraction_width = 0 or l'length < 7 or r'length < 7) then return 'X'; else for i in L'range loop if L(i) = '-' then founddash := true; end if; end loop; for i in R'range loop if R(i) = '-' then founddash := true; end if; end loop; if founddash then report float_generic_pkg'instance_name & " ""?>"": '-' found in compare string" severity error; return 'X'; elsif is_x(l) or is_x(r) then return 'X'; elsif l > r then return '1'; else return '0'; end if; end if; end function "?>"; function "?>=" (L, R : UNRESOLVED_float) return STD_ULOGIC is constant fraction_width : NATURAL := -mine(l'low, r'low); variable founddash : BOOLEAN := false; begin if (fraction_width = 0 or l'length < 7 or r'length < 7) then return 'X'; else for i in L'range loop if L(i) = '-' then founddash := true; end if; end loop; for i in R'range loop if R(i) = '-' then founddash := true; end if; end loop; if founddash then report float_generic_pkg'instance_name & " ""?>="": '-' found in compare string" severity error; return 'X'; elsif is_x(l) or is_x(r) then return 'X'; elsif l >= r then return '1'; else return '0'; end if; end if; end function "?>="; function "?<" (L, R : UNRESOLVED_float) return STD_ULOGIC is constant fraction_width : NATURAL := -mine(l'low, r'low); variable founddash : BOOLEAN := false; begin if (fraction_width = 0 or l'length < 7 or r'length < 7) then return 'X'; else for i in L'range loop if L(i) = '-' then founddash := true; end if; end loop; for i in R'range loop if R(i) = '-' then founddash := true; end if; end loop; if founddash then report float_generic_pkg'instance_name & " ""?<"": '-' found in compare string" severity error; return 'X'; elsif is_x(l) or is_x(r) then return 'X'; elsif l < r then return '1'; else return '0'; end if; end if; end function "?<"; function "?<=" (L, R : UNRESOLVED_float) return STD_ULOGIC is constant fraction_width : NATURAL := -mine(l'low, r'low); variable founddash : BOOLEAN := false; begin if (fraction_width = 0 or l'length < 7 or r'length < 7) then return 'X'; else for i in L'range loop if L(i) = '-' then founddash := true; end if; end loop; for i in R'range loop if R(i) = '-' then founddash := true; end if; end loop; if founddash then report float_generic_pkg'instance_name & " ""?<="": '-' found in compare string" severity error; return 'X'; elsif is_x(l) or is_x(r) then return 'X'; elsif l <= r then return '1'; else return '0'; end if; end if; end function "?<="; function std_match (L, R : UNRESOLVED_float) return BOOLEAN is begin if (L'high = R'high and L'low = R'low) then return std_match(to_sulv(L), to_sulv(R)); else report float_generic_pkg'instance_name & "STD_MATCH: L'RANGE /= R'RANGE, returning FALSE" severity warning; return false; end if; end function std_match; function find_rightmost (arg : UNRESOLVED_float; y : STD_ULOGIC) return INTEGER is begin for_loop : for i in arg'reverse_range loop if arg(i) ?= y then return i; end if; end loop; return arg'high+1; -- return out of bounds 'high end function find_rightmost; function find_leftmost (arg : UNRESOLVED_float; y : STD_ULOGIC) return INTEGER is begin for_loop : for i in arg'range loop if arg(i) ?= y then return i; end if; end loop; return arg'low-1; -- return out of bounds 'low end function find_leftmost; -- These override the defaults for the compare operators. function "=" (l, r : UNRESOLVED_float) return BOOLEAN is begin return eq(l, r); end function "="; function "/=" (l, r : UNRESOLVED_float) return BOOLEAN is begin return ne(l, r); end function "/="; function ">=" (l, r : UNRESOLVED_float) return BOOLEAN is begin return ge(l, r); end function ">="; function "<=" (l, r : UNRESOLVED_float) return BOOLEAN is begin return le(l, r); end function "<="; function ">" (l, r : UNRESOLVED_float) return BOOLEAN is begin return gt(l, r); end function ">"; function "<" (l, r : UNRESOLVED_float) return BOOLEAN is begin return lt(l, r); end function "<"; -- purpose: maximum of two numbers (overrides default) function maximum ( L, R : UNRESOLVED_float) return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin if ((L'length < 1) or (R'length < 1)) then return NAFP; end if; lresize := resize (l, exponent_width, fraction_width); rresize := resize (r, exponent_width, fraction_width); if lresize > rresize then return lresize; else return rresize; end if; end function maximum; function minimum ( L, R : UNRESOLVED_float) return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); begin if ((L'length < 1) or (R'length < 1)) then return NAFP; end if; lresize := resize (l, exponent_width, fraction_width); rresize := resize (r, exponent_width, fraction_width); if lresize > rresize then return rresize; else return lresize; end if; end function minimum; ----------------------------------------------------------------------------- -- conversion functions ----------------------------------------------------------------------------- -- Converts a floating point number of one format into another format function resize ( arg : UNRESOLVED_float; -- Floating point input constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error; constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant in_fraction_width : NATURAL := -arg'low; -- length of FP output fraction constant in_exponent_width : NATURAL := arg'high; -- length of FP output exponent variable result : UNRESOLVED_float (exponent_width downto -fraction_width); -- result value variable fptype : valid_fpstate; variable expon_in : SIGNED (in_exponent_width-1 downto 0); variable fract_in : UNSIGNED (in_fraction_width downto 0); variable round : BOOLEAN; variable expon_out : SIGNED (exponent_width-1 downto 0); -- output fract variable fract_out : UNSIGNED (fraction_width downto 0); -- output fract variable passguard : NATURAL; begin fptype := classfp(arg, check_error); if ((fptype = pos_denormal or fptype = neg_denormal) and denormalize_in and (in_exponent_width < exponent_width or in_fraction_width < fraction_width)) or in_exponent_width > exponent_width or in_fraction_width > fraction_width then -- size reduction classcase : case fptype is when isx => result := (others => 'X'); when nan | quiet_nan => result := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); when pos_inf => result := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); when neg_inf => result := neg_inffp (fraction_width => fraction_width, exponent_width => exponent_width); when pos_zero | neg_zero => result := zerofp (fraction_width => fraction_width, -- hate -0 exponent_width => exponent_width); when others => break_number ( arg => arg, fptyp => fptype, denormalize => denormalize_in, fract => fract_in, expon => expon_in); if fraction_width > in_fraction_width and denormalize_in then -- You only get here if you have a denormal input fract_out := (others => '0'); -- pad with zeros fract_out (fraction_width downto fraction_width - in_fraction_width) := fract_in; result := normalize ( fract => fract_out, expon => expon_in, sign => arg(arg'high), fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => 0); else result := normalize ( fract => fract_in, expon => expon_in, sign => arg(arg'high), fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => in_fraction_width - fraction_width); end if; end case classcase; else -- size increase or the same size if exponent_width > in_exponent_width then expon_in := SIGNED(arg (in_exponent_width-1 downto 0)); if fptype = pos_zero or fptype = neg_zero then result (exponent_width-1 downto 0) := (others => '0'); elsif expon_in = -1 then -- inf or nan (shorts out check_error) result (exponent_width-1 downto 0) := (others => '1'); else -- invert top BIT expon_in(expon_in'high) := not expon_in(expon_in'high); expon_out := resize (expon_in, expon_out'length); -- signed expand -- Flip it back. expon_out(expon_out'high) := not expon_out(expon_out'high); result (exponent_width-1 downto 0) := UNRESOLVED_float(expon_out); end if; result (exponent_width) := arg (in_exponent_width); -- sign else -- exponent_width = in_exponent_width result (exponent_width downto 0) := arg (in_exponent_width downto 0); end if; if fraction_width > in_fraction_width then result (-1 downto -fraction_width) := (others => '0'); -- zeros result (-1 downto -in_fraction_width) := arg (-1 downto -in_fraction_width); else -- fraction_width = in_fraciton_width result (-1 downto -fraction_width) := arg (-1 downto -in_fraction_width); end if; end if; return result; end function resize; function resize ( arg : UNRESOLVED_float; -- floating point input size_res : UNRESOLVED_float; constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error; constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is variable result : UNRESOLVED_float (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := resize (arg => arg, exponent_width => size_res'high, fraction_width => -size_res'low, round_style => round_style, check_error => check_error, denormalize_in => denormalize_in, denormalize => denormalize); return result; end if; end function resize; function to_float32 ( arg : UNRESOLVED_float; constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error; constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float32 is begin return resize (arg => arg, exponent_width => float32'high, fraction_width => -float32'low, round_style => round_style, check_error => check_error, denormalize_in => denormalize_in, denormalize => denormalize); end function to_float32; function to_float64 ( arg : UNRESOLVED_float; constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error; constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float64 is begin return resize (arg => arg, exponent_width => float64'high, fraction_width => -float64'low, round_style => round_style, check_error => check_error, denormalize_in => denormalize_in, denormalize => denormalize); end function to_float64; function to_float128 ( arg : UNRESOLVED_float; constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error; constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float128 is begin return resize (arg => arg, exponent_width => float128'high, fraction_width => -float128'low, round_style => round_style, check_error => check_error, denormalize_in => denormalize_in, denormalize => denormalize); end function to_float128; -- to_float (Real) -- typically not Synthesizable unless the input is a constant. function to_float ( arg : REAL; constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction constant round_style : round_type := float_round_style; -- rounding option constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width); variable arg_real : REAL; -- Real version of argument variable validfp : boundary_type; -- Check for valid results variable exp : INTEGER; -- Integer version of exponent variable expon : UNSIGNED (exponent_width - 1 downto 0); -- Unsigned version of exp. constant expon_base : SIGNED (exponent_width-1 downto 0) := gen_expon_base(exponent_width); -- exponent offset variable fract : UNSIGNED (fraction_width-1 downto 0); variable frac : REAL; -- Real version of fraction constant roundfrac : REAL := 2.0 ** (-2 - fract'high); -- used for rounding variable round : BOOLEAN; -- to round or not to round begin result := (others => '0'); arg_real := arg; if arg_real < 0.0 then result (exponent_width) := '1'; arg_real := - arg_real; -- Make it positive. else result (exponent_width) := '0'; end if; test_boundary (arg => arg_real, fraction_width => fraction_width, exponent_width => exponent_width, denormalize => denormalize, btype => validfp, log2i => exp); if validfp = zero then return result; -- Result initialized to "0". elsif validfp = infinity then result (exponent_width - 1 downto 0) := (others => '1'); -- Exponent all "1" -- return infinity. return result; else if validfp = denormal then -- Exponent will default to "0". expon := (others => '0'); frac := arg_real * (2.0 ** (to_integer(expon_base)-1)); else -- Number less than 1. "normal" number expon := UNSIGNED (to_signed (exp-1, exponent_width)); expon(exponent_width-1) := not expon(exponent_width-1); frac := (arg_real / 2.0 ** exp) - 1.0; -- Number less than 1. end if; for i in 0 to fract'high loop if frac >= 2.0 ** (-1 - i) then fract (fract'high - i) := '1'; frac := frac - 2.0 ** (-1 - i); else fract (fract'high - i) := '0'; end if; end loop; round := false; case round_style is when round_nearest => if frac > roundfrac or ((frac = roundfrac) and fract(0) = '1') then round := true; end if; when round_inf => if frac /= 0.0 and result(exponent_width) = '0' then round := true; end if; when round_neginf => if frac /= 0.0 and result(exponent_width) = '1' then round := true; end if; when others => null; -- don't round end case; if (round) then if and(fract) = '1' then -- fraction is all "1" expon := expon + 1; fract := (others => '0'); else fract := fract + 1; end if; end if; result (exponent_width-1 downto 0) := UNRESOLVED_float(expon); result (-1 downto -fraction_width) := UNRESOLVED_float(fract); return result; end if; end function to_float; -- to_float (Integer) function to_float ( arg : INTEGER; constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction constant round_style : round_type := float_round_style) -- rounding option return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width); variable arg_int : NATURAL; -- Natural version of argument variable expon : SIGNED (exponent_width-1 downto 0); variable exptmp : SIGNED (exponent_width-1 downto 0); -- Unsigned version of exp. constant expon_base : SIGNED (exponent_width-1 downto 0) := gen_expon_base(exponent_width); -- exponent offset variable fract : UNSIGNED (fraction_width-1 downto 0) := (others => '0'); variable fracttmp : UNSIGNED (fraction_width-1 downto 0); variable round : BOOLEAN; variable shift : NATURAL; variable shiftr : NATURAL; variable roundfrac : NATURAL; -- used in rounding begin if arg < 0 then result (exponent_width) := '1'; arg_int := -arg; -- Make it positive. else result (exponent_width) := '0'; arg_int := arg; end if; if arg_int = 0 then result := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); else -- If the number is larger than we can represent in this number system -- we need to return infinity. shift := log2(arg_int); if shift > to_integer(expon_base) then -- worry about infinity if result (exponent_width) = '0' then result := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); else -- return negative infinity. result := neg_inffp (fraction_width => fraction_width, exponent_width => exponent_width); end if; else -- Normal number (can't be denormal) -- Compute Exponent expon := to_signed (shift-1, expon'length); -- positive fraction. -- Compute Fraction arg_int := arg_int - 2**shift; -- Subtract off the 1.0 shiftr := shift; for I in fract'high downto maximum (fract'high - shift + 1, 0) loop shiftr := shiftr - 1; if (arg_int >= 2**shiftr) then arg_int := arg_int - 2**shiftr; fract(I) := '1'; else fract(I) := '0'; end if; end loop; -- Rounding routine round := false; if arg_int > 0 then roundfrac := 2**(shiftr-1); case round_style is when round_nearest => if arg_int > roundfrac or ((arg_int = roundfrac) and fract(0) = '1') then round := true; end if; when round_inf => if arg_int /= 0 and result (exponent_width) = '0' then round := true; end if; when round_neginf => if arg_int /= 0 and result (exponent_width) = '1' then round := true; end if; when others => null; end case; end if; if round then fp_round(fract_in => fract, expon_in => expon, fract_out => fracttmp, expon_out => exptmp); fract := fracttmp; expon := exptmp; end if; -- Put the number together and return expon(exponent_width-1) := not expon(exponent_width-1); result (exponent_width-1 downto 0) := UNRESOLVED_float(expon); result (-1 downto -fraction_width) := UNRESOLVED_float(fract); end if; end if; return result; end function to_float; -- to_float (unsigned) function to_float ( arg : UNSIGNED; constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction constant round_style : round_type := float_round_style) -- rounding option return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width); constant ARG_LEFT : INTEGER := ARG'length-1; alias XARG : UNSIGNED(ARG_LEFT downto 0) is ARG; variable sarg : SIGNED (ARG_LEFT+1 downto 0); -- signed version of arg begin if arg'length < 1 then return NAFP; end if; sarg (XARG'range) := SIGNED (XARG); sarg (sarg'high) := '0'; result := to_float (arg => sarg, exponent_width => exponent_width, fraction_width => fraction_width, round_style => round_style); return result; end function to_float; -- to_float (signed) function to_float ( arg : SIGNED; constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction constant round_style : round_type := float_round_style) -- rounding option return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width); constant ARG_LEFT : INTEGER := ARG'length-1; alias XARG : SIGNED(ARG_LEFT downto 0) is ARG; variable arg_int : UNSIGNED(xarg'range); -- Real version of argument variable argb2 : UNSIGNED(xarg'high/2 downto 0); -- log2 of input variable rexp : SIGNED (exponent_width - 1 downto 0); variable exp : SIGNED (exponent_width - 1 downto 0); -- signed version of exp. variable expon : UNSIGNED (exponent_width - 1 downto 0); -- Unsigned version of exp. constant expon_base : SIGNED (exponent_width-1 downto 0) := gen_expon_base(exponent_width); -- exponent offset variable round : BOOLEAN; variable fract : UNSIGNED (fraction_width-1 downto 0); variable rfract : UNSIGNED (fraction_width-1 downto 0); variable sign : STD_ULOGIC; -- sign bit begin if arg'length < 1 then return NAFP; end if; if Is_X (xarg) then result := (others => 'X'); elsif (xarg = 0) then result := zerofp (fraction_width => fraction_width, exponent_width => exponent_width); else -- Normal number (can't be denormal) sign := to_X01(xarg (xarg'high)); arg_int := UNSIGNED(abs (to_01(xarg))); -- Compute Exponent argb2 := to_unsigned(find_leftmost(arg_int, '1'), argb2'length); -- Log2 if argb2 > UNSIGNED(expon_base) then result := pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); result (exponent_width) := sign; else exp := SIGNED(resize(argb2, exp'length)); arg_int := shift_left (arg_int, arg_int'high-to_integer(exp)); if (arg_int'high > fraction_width) then fract := arg_int (arg_int'high-1 downto (arg_int'high-fraction_width)); round := check_round ( fract_in => fract (0), sign => sign, remainder => arg_int((arg_int'high-fraction_width-1) downto 0), round_style => round_style); if round then fp_round(fract_in => fract, expon_in => exp, fract_out => rfract, expon_out => rexp); else rfract := fract; rexp := exp; end if; else rexp := exp; rfract := (others => '0'); rfract (fraction_width-1 downto fraction_width-1-(arg_int'high-1)) := arg_int (arg_int'high-1 downto 0); end if; result (exponent_width) := sign; expon := UNSIGNED (rexp-1); expon(exponent_width-1) := not expon(exponent_width-1); result (exponent_width-1 downto 0) := UNRESOLVED_float(expon); result (-1 downto -fraction_width) := UNRESOLVED_float(rfract); end if; end if; return result; end function to_float; -- std_logic_vector to float function to_float ( arg : STD_ULOGIC_VECTOR; constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent constant fraction_width : NATURAL := float_fraction_width) -- length of FP output fraction return UNRESOLVED_float is variable fpvar : UNRESOLVED_float (exponent_width downto -fraction_width); begin if arg'length < 1 then return NAFP; end if; fpvar := UNRESOLVED_float(arg); return fpvar; end function to_float; -- purpose: converts a ufixed to a floating point function to_float ( arg : UNRESOLVED_ufixed; -- unsigned fixed point input constant exponent_width : NATURAL := float_exponent_width; -- width of exponent constant fraction_width : NATURAL := float_fraction_width; -- width of fraction constant round_style : round_type := float_round_style; -- rounding constant denormalize : BOOLEAN := float_denormalize) -- use ieee extensions return UNRESOLVED_float is variable sarg : sfixed (arg'high+1 downto arg'low); -- Signed version of arg variable result : UNRESOLVED_float (exponent_width downto -fraction_width); begin -- function to_float if (arg'length < 1) then return NAFP; end if; sarg (arg'range) := sfixed (arg); sarg (sarg'high) := '0'; result := to_float (arg => sarg, exponent_width => exponent_width, fraction_width => fraction_width, round_style => round_style, denormalize => denormalize); return result; end function to_float; function to_float ( arg : UNRESOLVED_sfixed; -- signed fixed point constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction constant round_style : round_type := float_round_style; -- rounding constant denormalize : BOOLEAN := float_denormalize) -- rounding option return UNRESOLVED_float is constant integer_width : INTEGER := arg'high; constant in_fraction_width : INTEGER := arg'low; variable xresult : sfixed (integer_width downto in_fraction_width); variable result : UNRESOLVED_float (exponent_width downto -fraction_width); variable arg_int : UNSIGNED(integer_width - in_fraction_width - 1 downto 0); -- signed version of argument variable argx : SIGNED (integer_width - in_fraction_width downto 0); variable exp, exptmp : SIGNED (exponent_width downto 0); variable expon : UNSIGNED (exponent_width - 1 downto 0); -- Unsigned version of exp. constant expon_base : SIGNED (exponent_width-1 downto 0) := gen_expon_base(exponent_width); -- exponent offset variable fract, fracttmp : UNSIGNED (fraction_width-1 downto 0) := (others => '0'); variable round : BOOLEAN := false; begin if (arg'length < 1) then return NAFP; end if; xresult := to_01(arg, 'X'); argx := SIGNED(to_slv(xresult)); if (Is_X (arg)) then result := (others => 'X'); elsif (argx = 0) then result := (others => '0'); else result := (others => '0'); -- zero out the result if argx(argx'left) = '1' then -- toss the sign bit result (exponent_width) := '1'; -- Negative number argx := -argx; -- Make it positive. else result (exponent_width) := '0'; end if; arg_int := UNSIGNED(to_x01(STD_LOGIC_VECTOR (argx(arg_int'range)))); -- Compute Exponent exp := to_signed(find_leftmost(arg_int, '1'), exp'length); -- Log2 if exp + in_fraction_width > expon_base then -- return infinity result (-1 downto -fraction_width) := (others => '0'); result (exponent_width -1 downto 0) := (others => '1'); return result; elsif (denormalize and (exp + in_fraction_width <= -resize(expon_base, exp'length))) then exp := -resize(expon_base, exp'length); -- shift by a constant arg_int := shift_left (arg_int, (arg_int'high + to_integer(expon_base) + in_fraction_width - 1)); if (arg_int'high > fraction_width) then fract := arg_int (arg_int'high-1 downto (arg_int'high-fraction_width)); round := check_round ( fract_in => arg_int(arg_int'high-fraction_width), sign => result(result'high), remainder => arg_int((arg_int'high-fraction_width-1) downto 0), round_style => round_style); if (round) then fp_round (fract_in => arg_int (arg_int'high-1 downto (arg_int'high-fraction_width)), expon_in => exp, fract_out => fract, expon_out => exptmp); exp := exptmp; end if; else fract (fraction_width-1 downto fraction_width-1-(arg_int'high-1)) := arg_int (arg_int'high-1 downto 0); end if; else arg_int := shift_left (arg_int, arg_int'high-to_integer(exp)); exp := exp + in_fraction_width; if (arg_int'high > fraction_width) then fract := arg_int (arg_int'high-1 downto (arg_int'high-fraction_width)); round := check_round ( fract_in => fract(0), sign => result(result'high), remainder => arg_int((arg_int'high-fraction_width-1) downto 0), round_style => round_style); if (round) then fp_round (fract_in => fract, expon_in => exp, fract_out => fracttmp, expon_out => exptmp); fract := fracttmp; exp := exptmp; end if; else fract (fraction_width-1 downto fraction_width-1-(arg_int'high-1)) := arg_int (arg_int'high-1 downto 0); end if; end if; expon := UNSIGNED (resize(exp-1, exponent_width)); expon(exponent_width-1) := not expon(exponent_width-1); result (exponent_width-1 downto 0) := UNRESOLVED_float(expon); result (-1 downto -fraction_width) := UNRESOLVED_float(fract); end if; return result; end function to_float; -- size_res functions -- Integer to float function to_float ( arg : INTEGER; size_res : UNRESOLVED_float; constant round_style : round_type := float_round_style) -- rounding option return UNRESOLVED_float is variable result : UNRESOLVED_float (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := to_float (arg => arg, exponent_width => size_res'high, fraction_width => -size_res'low, round_style => round_style); return result; end if; end function to_float; -- real to float function to_float ( arg : REAL; size_res : UNRESOLVED_float; constant round_style : round_type := float_round_style; -- rounding option constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is variable result : UNRESOLVED_float (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := to_float (arg => arg, exponent_width => size_res'high, fraction_width => -size_res'low, round_style => round_style, denormalize => denormalize); return result; end if; end function to_float; -- unsigned to float function to_float ( arg : UNRESOLVED_UNSIGNED; size_res : UNRESOLVED_float; constant round_style : round_type := float_round_style) -- rounding option return UNRESOLVED_float is variable result : UNRESOLVED_float (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := to_float (arg => arg, exponent_width => size_res'high, fraction_width => -size_res'low, round_style => round_style); return result; end if; end function to_float; -- signed to float function to_float ( arg : UNRESOLVED_SIGNED; size_res : UNRESOLVED_float; constant round_style : round_type := float_round_style) -- rounding return UNRESOLVED_float is variable result : UNRESOLVED_float (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := to_float (arg => arg, exponent_width => size_res'high, fraction_width => -size_res'low, round_style => round_style); return result; end if; end function to_float; -- std_ulogic_vector to float function to_float ( arg : STD_ULOGIC_VECTOR; size_res : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := to_float (arg => arg, exponent_width => size_res'high, fraction_width => -size_res'low); return result; end if; end function to_float; -- unsigned fixed point to float function to_float ( arg : UNRESOLVED_ufixed; -- unsigned fixed point input size_res : UNRESOLVED_float; constant round_style : round_type := float_round_style; -- rounding constant denormalize : BOOLEAN := float_denormalize) -- use ieee extensions return UNRESOLVED_float is variable result : UNRESOLVED_float (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := to_float (arg => arg, exponent_width => size_res'high, fraction_width => -size_res'low, round_style => round_style, denormalize => denormalize); return result; end if; end function to_float; -- signed fixed point to float function to_float ( arg : UNRESOLVED_sfixed; size_res : UNRESOLVED_float; constant round_style : round_type := float_round_style; -- rounding constant denormalize : BOOLEAN := float_denormalize) -- rounding option return UNRESOLVED_float is variable result : UNRESOLVED_float (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := to_float (arg => arg, exponent_width => size_res'high, fraction_width => -size_res'low, round_style => round_style, denormalize => denormalize); return result; end if; end function to_float; -- to_integer (float) function to_integer ( arg : UNRESOLVED_float; -- floating point input constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error) -- check for errors return INTEGER is variable validfp : valid_fpstate; -- Valid FP state variable frac : UNSIGNED (-arg'low downto 0); -- Fraction variable fract : UNSIGNED (1-arg'low downto 0); -- Fraction variable expon : SIGNED (arg'high-1 downto 0); variable isign : STD_ULOGIC; -- internal version of sign variable round : STD_ULOGIC; -- is rounding needed? variable result : INTEGER; variable base : INTEGER; -- Integer exponent begin validfp := classfp (arg, check_error); classcase : case validfp is when isx | nan | quiet_nan | pos_zero | neg_zero | pos_denormal | neg_denormal => result := 0; -- return 0 when pos_inf => result := INTEGER'high; when neg_inf => result := INTEGER'low; when others => break_number ( arg => arg, fptyp => validfp, denormalize => false, fract => frac, expon => expon); fract (fract'high) := '0'; -- Add extra bit for 0.6 case fract (fract'high-1 downto 0) := frac; isign := to_x01 (arg (arg'high)); base := to_integer (expon) + 1; if base < -1 then result := 0; elsif base >= frac'high then result := to_integer (fract) * 2**(base - frac'high); else -- We need to round if base = -1 then -- trap for 0.6 case. result := 0; else result := to_integer (fract (frac'high downto frac'high-base)); end if; -- rounding routine case round_style is when round_nearest => if frac'high - base > 1 then round := fract (frac'high - base - 1) and (fract (frac'high - base) or (or (fract (frac'high - base - 2 downto 0)))); else round := fract (frac'high - base - 1) and fract (frac'high - base); end if; when round_inf => round := fract(frac'high - base - 1) and not isign; when round_neginf => round := fract(frac'high - base - 1) and isign; when others => round := '0'; end case; if round = '1' then result := result + 1; end if; end if; if isign = '1' then result := - result; end if; end case classcase; return result; end function to_integer; -- to_unsigned (float) function to_unsigned ( arg : UNRESOLVED_float; -- floating point input constant size : NATURAL; -- length of output constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error) -- check for errors return UNRESOLVED_UNSIGNED is variable validfp : valid_fpstate; -- Valid FP state variable frac : UNRESOLVED_UNSIGNED (size-1 downto 0); -- Fraction variable sign : STD_ULOGIC; -- not used begin validfp := classfp (arg, check_error); classcase : case validfp is when isx | nan | quiet_nan => frac := (others => 'X'); when pos_zero | neg_inf | neg_zero | neg_normal | pos_denormal | neg_denormal => frac := (others => '0'); -- return 0 when pos_inf => frac := (others => '1'); when others => float_to_unsigned ( arg => arg, frac => frac, sign => sign, denormalize => false, bias => 0, round_style => round_style); end case classcase; return (frac); end function to_unsigned; -- to_signed (float) function to_signed ( arg : UNRESOLVED_float; -- floating point input constant size : NATURAL; -- length of output constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error) -- check for errors return UNRESOLVED_SIGNED is variable sign : STD_ULOGIC; -- true if negative variable validfp : valid_fpstate; -- Valid FP state variable frac : UNRESOLVED_UNSIGNED (size-1 downto 0); -- Fraction variable result : UNRESOLVED_SIGNED (size-1 downto 0); begin validfp := classfp (arg, check_error); classcase : case validfp is when isx | nan | quiet_nan => result := (others => 'X'); when pos_zero | neg_zero | pos_denormal | neg_denormal => result := (others => '0'); -- return 0 when pos_inf => result := (others => '1'); result (result'high) := '0'; when neg_inf => result := (others => '0'); result (result'high) := '1'; when others => float_to_unsigned ( arg => arg, sign => sign, frac => frac, denormalize => false, bias => 0, round_style => round_style); result (size-1) := '0'; result (size-2 downto 0) := UNRESOLVED_SIGNED(frac (size-2 downto 0)); if sign = '1' then -- Because the most negative signed number is 1 less than the most -- positive signed number, we need this code. if frac(frac'high) = '1' then -- return most negative number result := (others => '0'); result (result'high) := '1'; else result := -result; end if; else if frac(frac'high) = '1' then -- return most positive number result := (others => '1'); result (result'high) := '0'; end if; end if; end case classcase; return result; end function to_signed; -- purpose: Converts a float to ufixed function to_ufixed ( arg : UNRESOLVED_float; -- fp input constant left_index : INTEGER; -- integer part constant right_index : INTEGER; -- fraction part constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate constant round_style : fixed_round_style_type := fixed_round_style; -- rounding constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) return UNRESOLVED_ufixed is constant fraction_width : INTEGER := -mine(arg'low, arg'low); -- length of FP output fraction constant exponent_width : INTEGER := arg'high; -- length of FP output exponent constant size : INTEGER := left_index - right_index + 4; -- unsigned size variable expon_base : INTEGER; -- exponent offset variable validfp : valid_fpstate; -- Valid FP state variable exp : INTEGER; -- Exponent variable expon : UNSIGNED (exponent_width-1 downto 0); -- Vectorized exponent -- Base to divide fraction by variable frac : UNSIGNED (size-1 downto 0) := (others => '0'); -- Fraction variable frac_shift : UNSIGNED (size-1 downto 0); -- Fraction shifted variable shift : INTEGER; variable result_big : UNRESOLVED_ufixed (left_index downto right_index-3); variable result : UNRESOLVED_ufixed (left_index downto right_index); -- result begin -- function to_ufixed validfp := classfp (arg, check_error); classcase : case validfp is when isx | nan | quiet_nan => frac := (others => 'X'); when pos_zero | neg_inf | neg_zero | neg_normal | neg_denormal => frac := (others => '0'); -- return 0 when pos_inf => frac := (others => '1'); -- always saturate when others => expon_base := 2**(exponent_width-1) -1; -- exponent offset -- Figure out the fraction if (validfp = pos_denormal) and denormalize then exp := -expon_base +1; frac (frac'high) := '0'; -- Remove the "1.0". else -- exponent /= '0', normal floating point expon := UNSIGNED(arg (exponent_width-1 downto 0)); expon(exponent_width-1) := not expon(exponent_width-1); exp := to_integer (SIGNED(expon)) +1; frac (frac'high) := '1'; -- Add the "1.0". end if; shift := (frac'high - 3 + right_index) - exp; if fraction_width > frac'high then -- Can only use size-2 bits frac (frac'high-1 downto 0) := UNSIGNED (to_slv (arg(-1 downto -frac'high))); else -- can use all bits frac (frac'high-1 downto frac'high-fraction_width) := UNSIGNED (to_slv (arg(-1 downto -fraction_width))); end if; frac_shift := frac srl shift; if shift < 0 then -- Overflow frac := (others => '1'); else frac := frac_shift; end if; end case classcase; result_big := to_ufixed ( arg => STD_ULOGIC_VECTOR(frac), left_index => left_index, right_index => (right_index-3)); result := resize (arg => result_big, left_index => left_index, right_index => right_index, round_style => round_style, overflow_style => overflow_style); return result; end function to_ufixed; -- purpose: Converts a float to sfixed function to_sfixed ( arg : UNRESOLVED_float; -- fp input constant left_index : INTEGER; -- integer part constant right_index : INTEGER; -- fraction part constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate constant round_style : fixed_round_style_type := fixed_round_style; -- rounding constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) return UNRESOLVED_sfixed is constant fraction_width : INTEGER := -mine(arg'low, arg'low); -- length of FP output fraction constant exponent_width : INTEGER := arg'high; -- length of FP output exponent constant size : INTEGER := left_index - right_index + 4; -- unsigned size variable expon_base : INTEGER; -- exponent offset variable validfp : valid_fpstate; -- Valid FP state variable exp : INTEGER; -- Exponent variable sign : BOOLEAN; -- true if negative variable expon : UNSIGNED (exponent_width-1 downto 0); -- Vectorized exponent -- Base to divide fraction by variable frac : UNSIGNED (size-2 downto 0) := (others => '0'); -- Fraction variable frac_shift : UNSIGNED (size-2 downto 0); -- Fraction shifted variable shift : INTEGER; variable rsigned : SIGNED (size-1 downto 0); -- signed version of result variable result_big : UNRESOLVED_sfixed (left_index downto right_index-3); variable result : UNRESOLVED_sfixed (left_index downto right_index) := (others => '0'); -- result begin -- function to_sfixed validfp := classfp (arg, check_error); classcase : case validfp is when isx | nan | quiet_nan => result := (others => 'X'); when pos_zero | neg_zero => result := (others => '0'); -- return 0 when neg_inf => result (left_index) := '1'; -- return smallest negative number when pos_inf => result := (others => '1'); -- return largest number result (left_index) := '0'; when others => expon_base := 2**(exponent_width-1) -1; -- exponent offset if arg(exponent_width) = '0' then sign := false; else sign := true; end if; -- Figure out the fraction if (validfp = pos_denormal or validfp = neg_denormal) and denormalize then exp := -expon_base +1; frac (frac'high) := '0'; -- Add the "1.0". else -- exponent /= '0', normal floating point expon := UNSIGNED(arg (exponent_width-1 downto 0)); expon(exponent_width-1) := not expon(exponent_width-1); exp := to_integer (SIGNED(expon)) +1; frac (frac'high) := '1'; -- Add the "1.0". end if; shift := (frac'high - 3 + right_index) - exp; if fraction_width > frac'high then -- Can only use size-2 bits frac (frac'high-1 downto 0) := UNSIGNED (to_slv (arg(-1 downto -frac'high))); else -- can use all bits frac (frac'high-1 downto frac'high-fraction_width) := UNSIGNED (to_slv (arg(-1 downto -fraction_width))); end if; frac_shift := frac srl shift; if shift < 0 then -- Overflow frac := (others => '1'); else frac := frac_shift; end if; if not sign then rsigned := SIGNED("0" & frac); else rsigned := -(SIGNED("0" & frac)); end if; result_big := to_sfixed ( arg => STD_LOGIC_VECTOR(rsigned), left_index => left_index, right_index => (right_index-3)); result := resize (arg => result_big, left_index => left_index, right_index => right_index, round_style => round_style, overflow_style => overflow_style); end case classcase; return result; end function to_sfixed; -- size_res versions -- float to unsigned function to_unsigned ( arg : UNRESOLVED_float; -- floating point input size_res : UNRESOLVED_UNSIGNED; constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error) -- check for errors return UNRESOLVED_UNSIGNED is variable result : UNRESOLVED_UNSIGNED (size_res'range); begin if (SIZE_RES'length = 0) then return result; else result := to_unsigned ( arg => arg, size => size_res'length, round_style => round_style, check_error => check_error); return result; end if; end function to_unsigned; -- float to signed function to_signed ( arg : UNRESOLVED_float; -- floating point input size_res : UNRESOLVED_SIGNED; constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error) -- check for errors return UNRESOLVED_SIGNED is variable result : UNRESOLVED_SIGNED (size_res'range); begin if (SIZE_RES'length = 0) then return result; else result := to_signed ( arg => arg, size => size_res'length, round_style => round_style, check_error => check_error); return result; end if; end function to_signed; -- purpose: Converts a float to unsigned fixed point function to_ufixed ( arg : UNRESOLVED_float; -- fp input size_res : UNRESOLVED_ufixed; constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate constant round_style : fixed_round_style_type := fixed_round_style; -- rounding constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) return UNRESOLVED_ufixed is variable result : UNRESOLVED_ufixed (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := to_ufixed ( arg => arg, left_index => size_res'high, right_index => size_res'low, overflow_style => overflow_style, round_style => round_style, check_error => check_error, denormalize => denormalize); return result; end if; end function to_ufixed; -- float to signed fixed point function to_sfixed ( arg : UNRESOLVED_float; -- fp input size_res : UNRESOLVED_sfixed; constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate constant round_style : fixed_round_style_type := fixed_round_style; -- rounding constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) return UNRESOLVED_sfixed is variable result : UNRESOLVED_sfixed (size_res'left downto size_res'right); begin if (result'length < 1) then return result; else result := to_sfixed ( arg => arg, left_index => size_res'high, right_index => size_res'low, overflow_style => overflow_style, round_style => round_style, check_error => check_error, denormalize => denormalize); return result; end if; end function to_sfixed; -- to_real (float) -- typically not Synthesizable unless the input is a constant. function to_real ( arg : UNRESOLVED_float; -- floating point input constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return REAL is constant fraction_width : INTEGER := -mine(arg'low, arg'low); -- length of FP output fraction constant exponent_width : INTEGER := arg'high; -- length of FP output exponent variable sign : REAL; -- Sign, + or - 1 variable exp : INTEGER; -- Exponent variable expon_base : INTEGER; -- exponent offset variable frac : REAL := 0.0; -- Fraction variable validfp : valid_fpstate; -- Valid FP state variable expon : UNSIGNED (exponent_width - 1 downto 0) := (others => '1'); -- Vectorized exponent begin validfp := classfp (arg, check_error); classcase : case validfp is when isx | pos_zero | neg_zero | nan | quiet_nan => return 0.0; when neg_inf => return REAL'low; -- Negative infinity. when pos_inf => return REAL'high; -- Positive infinity when others => expon_base := 2**(exponent_width-1) -1; if to_X01(arg(exponent_width)) = '0' then sign := 1.0; else sign := -1.0; end if; -- Figure out the fraction for i in 0 to fraction_width-1 loop if to_X01(arg (-1 - i)) = '1' then frac := frac + (2.0 **(-1 - i)); end if; end loop; -- i if validfp = pos_normal or validfp = neg_normal or not denormalize then -- exponent /= '0', normal floating point expon := UNSIGNED(arg (exponent_width-1 downto 0)); expon(exponent_width-1) := not expon(exponent_width-1); exp := to_integer (SIGNED(expon)) +1; sign := sign * (2.0 ** exp) * (1.0 + frac); else -- exponent = '0', IEEE extended floating point exp := 1 - expon_base; sign := sign * (2.0 ** exp) * frac; end if; return sign; end case classcase; end function to_real; -- For Verilog compatability function realtobits (arg : REAL) return STD_ULOGIC_VECTOR is variable result : float64; -- 64 bit floating point begin result := to_float (arg => arg, exponent_width => float64'high, fraction_width => -float64'low); return to_sulv (result); end function realtobits; function bitstoreal (arg : STD_ULOGIC_VECTOR) return REAL is variable arg64 : float64; -- arg converted to float begin arg64 := to_float (arg => arg, exponent_width => float64'high, fraction_width => -float64'low); return to_real (arg64); end function bitstoreal; -- purpose: Removes meta-logical values from FP string function to_01 ( arg : UNRESOLVED_float; -- floating point input XMAP : STD_LOGIC := '0') return UNRESOLVED_float is variable result : UNRESOLVED_float (arg'range); begin -- function to_01 if (arg'length < 1) then assert NO_WARNING report FLOAT_GENERIC_PKG'instance_name & "TO_01: null detected, returning NULL" severity warning; return NAFP; end if; result := UNRESOLVED_float (STD_LOGIC_VECTOR(to_01(UNSIGNED(to_slv(arg)), XMAP))); return result; end function to_01; function Is_X (arg : UNRESOLVED_float) return BOOLEAN is begin return Is_X (to_slv(arg)); end function Is_X; function to_X01 (arg : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (arg'range); begin if (arg'length < 1) then assert NO_WARNING report FLOAT_GENERIC_PKG'instance_name & "TO_X01: null detected, returning NULL" severity warning; return NAFP; else result := UNRESOLVED_float (to_X01(to_slv(arg))); return result; end if; end function to_X01; function to_X01Z (arg : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (arg'range); begin if (arg'length < 1) then assert NO_WARNING report FLOAT_GENERIC_PKG'instance_name & "TO_X01Z: null detected, returning NULL" severity warning; return NAFP; else result := UNRESOLVED_float (to_X01Z(to_slv(arg))); return result; end if; end function to_X01Z; function to_UX01 (arg : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (arg'range); begin if (arg'length < 1) then assert NO_WARNING report FLOAT_GENERIC_PKG'instance_name & "TO_UX01: null detected, returning NULL" severity warning; return NAFP; else result := UNRESOLVED_float (to_UX01(to_slv(arg))); return result; end if; end function to_UX01; -- These allows the base math functions to use the default values -- of their parameters. Thus they do full IEEE floating point. function "+" (l, r : UNRESOLVED_float) return UNRESOLVED_float is begin return add (l, r); end function "+"; function "-" (l, r : UNRESOLVED_float) return UNRESOLVED_float is begin return subtract (l, r); end function "-"; function "*" (l, r : UNRESOLVED_float) return UNRESOLVED_float is begin return multiply (l, r); end function "*"; function "/" (l, r : UNRESOLVED_float) return UNRESOLVED_float is begin return divide (l, r); end function "/"; function "rem" (l, r : UNRESOLVED_float) return UNRESOLVED_float is begin return remainder (l, r); end function "rem"; function "mod" (l, r : UNRESOLVED_float) return UNRESOLVED_float is begin return modulo (l, r); end function "mod"; -- overloaded versions function "+" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return add (l, r_float); end function "+"; function "+" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return add (l_float, r); end function "+"; function "+" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return add (l, r_float); end function "+"; function "+" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return add (l_float, r); end function "+"; function "-" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return subtract (l, r_float); end function "-"; function "-" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return subtract (l_float, r); end function "-"; function "-" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return subtract (l, r_float); end function "-"; function "-" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return subtract (l_float, r); end function "-"; function "*" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return multiply (l, r_float); end function "*"; function "*" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return multiply (l_float, r); end function "*"; function "*" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return multiply (l, r_float); end function "*"; function "*" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return multiply (l_float, r); end function "*"; function "/" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return divide (l, r_float); end function "/"; function "/" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return divide (l_float, r); end function "/"; function "/" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return divide (l, r_float); end function "/"; function "/" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return divide (l_float, r); end function "/"; function "rem" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return remainder (l, r_float); end function "rem"; function "rem" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return remainder (l_float, r); end function "rem"; function "rem" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return remainder (l, r_float); end function "rem"; function "rem" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return remainder (l_float, r); end function "rem"; function "mod" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return modulo (l, r_float); end function "mod"; function "mod" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return modulo (l_float, r); end function "mod"; function "mod" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return modulo (l, r_float); end function "mod"; function "mod" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return modulo (l_float, r); end function "mod"; function "=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return eq (l, r_float); end function "="; function "/=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return ne (l, r_float); end function "/="; function ">=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return ge (l, r_float); end function ">="; function "<=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return le (l, r_float); end function "<="; function ">" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return gt (l, r_float); end function ">"; function "<" (l : UNRESOLVED_float; r : REAL) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return lt (l, r_float); end function "<"; function "=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return eq (l_float, r); end function "="; function "/=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return ne (l_float, r); end function "/="; function ">=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return ge (l_float, r); end function ">="; function "<=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return le (l_float, r); end function "<="; function ">" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return gt (l_float, r); end function ">"; function "<" (l : REAL; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return lt (l_float, r); end function "<"; function "=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return eq (l, r_float); end function "="; function "/=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return ne (l, r_float); end function "/="; function ">=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return ge (l, r_float); end function ">="; function "<=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return le (l, r_float); end function "<="; function ">" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return gt (l, r_float); end function ">"; function "<" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return lt (l, r_float); end function "<"; function "=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return eq (l_float, r); end function "="; function "/=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return ne (l_float, r); end function "/="; function ">=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return ge (l_float, r); end function ">="; function "<=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return le (l_float, r); end function "<="; function ">" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return gt (l_float, r); end function ">"; function "<" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float(l, r'high, -r'low); return lt (l_float, r); end function "<"; -- ?= overloads function "?=" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?= r_float; end function "?="; function "?/=" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?/= r_float; end function "?/="; function "?>" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?> r_float; end function "?>"; function "?>=" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?>= r_float; end function "?>="; function "?<" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?< r_float; end function "?<"; function "?<=" (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?<= r_float; end function "?<="; -- real and float function "?=" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?= r; end function "?="; function "?/=" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?/= r; end function "?/="; function "?>" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?> r; end function "?>"; function "?>=" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?>= r; end function "?>="; function "?<" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?< r; end function "?<"; function "?<=" (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?<= r; end function "?<="; -- ?= overloads function "?=" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?= r_float; end function "?="; function "?/=" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?/= r_float; end function "?/="; function "?>" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?> r_float; end function "?>"; function "?>=" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?>= r_float; end function "?>="; function "?<" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?< r_float; end function "?<"; function "?<=" (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return l ?<= r_float; end function "?<="; -- integer and float function "?=" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?= r; end function "?="; function "?/=" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?/= r; end function "?/="; function "?>" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?> r; end function "?>"; function "?>=" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?>= r; end function "?>="; function "?<" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?< r; end function "?<"; function "?<=" (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return l_float ?<= r; end function "?<="; -- minimum and maximum overloads function minimum (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return minimum (l, r_float); end function minimum; function maximum (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return maximum (l, r_float); end function maximum; function minimum (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return minimum (l_float, r); end function minimum; function maximum (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return maximum (l_float, r); end function maximum; function minimum (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return minimum (l, r_float); end function minimum; function maximum (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float is variable r_float : UNRESOLVED_float (l'range); begin r_float := to_float (r, l'high, -l'low); return maximum (l, r_float); end function maximum; function minimum (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return minimum (l_float, r); end function minimum; function maximum (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float is variable l_float : UNRESOLVED_float (r'range); begin l_float := to_float (l, r'high, -r'low); return maximum (l_float, r); end function maximum; ---------------------------------------------------------------------------- -- logical functions ---------------------------------------------------------------------------- function "not" (L : UNRESOLVED_float) return UNRESOLVED_float is variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto begin RESULT := not to_sulv(L); return to_float (RESULT, L'high, -L'low); end function "not"; function "and" (L, R : UNRESOLVED_float) return UNRESOLVED_float is variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto begin if (L'high = R'high and L'low = R'low) then RESULT := to_sulv(L) and to_sulv(R); else assert NO_WARNING report float_generic_pkg'instance_name & """and"": Range error L'RANGE /= R'RANGE" severity warning; RESULT := (others => 'X'); end if; return to_float (RESULT, L'high, -L'low); end function "and"; function "or" (L, R : UNRESOLVED_float) return UNRESOLVED_float is variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto begin if (L'high = R'high and L'low = R'low) then RESULT := to_sulv(L) or to_sulv(R); else assert NO_WARNING report float_generic_pkg'instance_name & """or"": Range error L'RANGE /= R'RANGE" severity warning; RESULT := (others => 'X'); end if; return to_float (RESULT, L'high, -L'low); end function "or"; function "nand" (L, R : UNRESOLVED_float) return UNRESOLVED_float is variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto begin if (L'high = R'high and L'low = R'low) then RESULT := to_sulv(L) nand to_sulv(R); else assert NO_WARNING report float_generic_pkg'instance_name & """nand"": Range error L'RANGE /= R'RANGE" severity warning; RESULT := (others => 'X'); end if; return to_float (RESULT, L'high, -L'low); end function "nand"; function "nor" (L, R : UNRESOLVED_float) return UNRESOLVED_float is variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto begin if (L'high = R'high and L'low = R'low) then RESULT := to_sulv(L) nor to_sulv(R); else assert NO_WARNING report float_generic_pkg'instance_name & """nor"": Range error L'RANGE /= R'RANGE" severity warning; RESULT := (others => 'X'); end if; return to_float (RESULT, L'high, -L'low); end function "nor"; function "xor" (L, R : UNRESOLVED_float) return UNRESOLVED_float is variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto begin if (L'high = R'high and L'low = R'low) then RESULT := to_sulv(L) xor to_sulv(R); else assert NO_WARNING report float_generic_pkg'instance_name & """xor"": Range error L'RANGE /= R'RANGE" severity warning; RESULT := (others => 'X'); end if; return to_float (RESULT, L'high, -L'low); end function "xor"; function "xnor" (L, R : UNRESOLVED_float) return UNRESOLVED_float is variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto begin if (L'high = R'high and L'low = R'low) then RESULT := to_sulv(L) xnor to_sulv(R); else assert NO_WARNING report float_generic_pkg'instance_name & """xnor"": Range error L'RANGE /= R'RANGE" severity warning; RESULT := (others => 'X'); end if; return to_float (RESULT, L'high, -L'low); end function "xnor"; -- Vector and std_ulogic functions, same as functions in numeric_std function "and" (L : STD_ULOGIC; R : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (R'range); begin result := UNRESOLVED_float (L and to_sulv(R)); return result; end function "and"; function "and" (L : UNRESOLVED_float; R : STD_ULOGIC) return UNRESOLVED_float is variable result : UNRESOLVED_float (L'range); begin result := UNRESOLVED_float (to_sulv(L) and R); return result; end function "and"; function "or" (L : STD_ULOGIC; R : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (R'range); begin result := UNRESOLVED_float (L or to_sulv(R)); return result; end function "or"; function "or" (L : UNRESOLVED_float; R : STD_ULOGIC) return UNRESOLVED_float is variable result : UNRESOLVED_float (L'range); begin result := UNRESOLVED_float (to_sulv(L) or R); return result; end function "or"; function "nand" (L : STD_ULOGIC; R : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (R'range); begin result := UNRESOLVED_float (L nand to_sulv(R)); return result; end function "nand"; function "nand" (L : UNRESOLVED_float; R : STD_ULOGIC) return UNRESOLVED_float is variable result : UNRESOLVED_float (L'range); begin result := UNRESOLVED_float (to_sulv(L) nand R); return result; end function "nand"; function "nor" (L : STD_ULOGIC; R : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (R'range); begin result := UNRESOLVED_float (L nor to_sulv(R)); return result; end function "nor"; function "nor" (L : UNRESOLVED_float; R : STD_ULOGIC) return UNRESOLVED_float is variable result : UNRESOLVED_float (L'range); begin result := UNRESOLVED_float (to_sulv(L) nor R); return result; end function "nor"; function "xor" (L : STD_ULOGIC; R : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (R'range); begin result := UNRESOLVED_float (L xor to_sulv(R)); return result; end function "xor"; function "xor" (L : UNRESOLVED_float; R : STD_ULOGIC) return UNRESOLVED_float is variable result : UNRESOLVED_float (L'range); begin result := UNRESOLVED_float (to_sulv(L) xor R); return result; end function "xor"; function "xnor" (L : STD_ULOGIC; R : UNRESOLVED_float) return UNRESOLVED_float is variable result : UNRESOLVED_float (R'range); begin result := UNRESOLVED_float (L xnor to_sulv(R)); return result; end function "xnor"; function "xnor" (L : UNRESOLVED_float; R : STD_ULOGIC) return UNRESOLVED_float is variable result : UNRESOLVED_float (L'range); begin result := UNRESOLVED_float (to_sulv(L) xnor R); return result; end function "xnor"; -- Reduction operators, same as numeric_std functions function "and" (l : UNRESOLVED_float) return STD_ULOGIC is begin return and to_sulv(l); end function "and"; function "nand" (l : UNRESOLVED_float) return STD_ULOGIC is begin return nand to_sulv(l); end function "nand"; function "or" (l : UNRESOLVED_float) return STD_ULOGIC is begin return or to_sulv(l); end function "or"; function "nor" (l : UNRESOLVED_float) return STD_ULOGIC is begin return nor to_sulv(l); end function "nor"; function "xor" (l : UNRESOLVED_float) return STD_ULOGIC is begin return xor to_sulv(l); end function "xor"; function "xnor" (l : UNRESOLVED_float) return STD_ULOGIC is begin return xnor to_sulv(l); end function "xnor"; ----------------------------------------------------------------------------- -- Recommended Functions from the IEEE 754 Appendix ----------------------------------------------------------------------------- -- returns x with the sign of y. function Copysign ( x, y : UNRESOLVED_float) -- floating point input return UNRESOLVED_float is begin return y(y'high) & x (x'high-1 downto x'low); end function Copysign; -- Returns y * 2**n for integral values of N without computing 2**n function Scalb ( y : UNRESOLVED_float; -- floating point input N : INTEGER; -- exponent to add constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(y'low, y'low); -- length of FP output fraction constant exponent_width : NATURAL := y'high; -- length of FP output exponent variable arg, result : UNRESOLVED_float (exponent_width downto -fraction_width); -- internal argument variable expon : SIGNED (exponent_width-1 downto 0); -- Vectorized exp variable exp : SIGNED (exponent_width downto 0); variable ufract : UNSIGNED (fraction_width downto 0); constant expon_base : SIGNED (exponent_width-1 downto 0) := gen_expon_base(exponent_width); -- exponent offset variable fptype : valid_fpstate; begin -- This can be done by simply adding N to the exponent. arg := to_01 (y, 'X'); fptype := classfp(arg, check_error); classcase : case fptype is when isx => result := (others => 'X'); when nan | quiet_nan => -- Return quiet NAN, IEEE754-1985-7.1,1 result := qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); when others => break_number ( arg => arg, fptyp => fptype, denormalize => denormalize, fract => ufract, expon => expon); exp := resize (expon, exp'length) + N; result := normalize ( fract => ufract, expon => exp, sign => to_x01 (arg (arg'high)), fraction_width => fraction_width, exponent_width => exponent_width, round_style => round_style, denormalize => denormalize, nguard => 0); end case classcase; return result; end function Scalb; -- Returns y * 2**n for integral values of N without computing 2**n function Scalb ( y : UNRESOLVED_float; -- floating point input N : UNRESOLVED_SIGNED; -- exponent to add constant round_style : round_type := float_round_style; -- rounding option constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP return UNRESOLVED_float is variable n_int : INTEGER; begin n_int := to_integer(N); return Scalb (y => y, N => n_int, round_style => round_style, check_error => check_error, denormalize => denormalize); end function Scalb; -- returns the unbiased exponent of x function Logb ( x : UNRESOLVED_float) -- floating point input return INTEGER is constant fraction_width : NATURAL := -mine (x'low, x'low); -- length of FP output fraction constant exponent_width : NATURAL := x'high; -- length of FP output exponent variable result : INTEGER; -- result variable arg : UNRESOLVED_float (exponent_width downto -fraction_width); -- internal argument variable expon : SIGNED (exponent_width - 1 downto 0); variable fract : UNSIGNED (fraction_width downto 0); constant expon_base : INTEGER := 2**(exponent_width-1) -1; -- exponent -- offset +1 variable fptype : valid_fpstate; begin -- Just return the exponent. arg := to_01 (x, 'X'); fptype := classfp(arg); classcase : case fptype is when isx | nan | quiet_nan => -- Return quiet NAN, IEEE754-1985-7.1,1 result := 0; when pos_denormal | neg_denormal => fract (fraction_width) := '0'; fract (fraction_width-1 downto 0) := UNSIGNED (to_slv(arg(-1 downto -fraction_width))); result := find_leftmost (fract, '1') -- Find the first "1" - fraction_width; -- subtract the length we want result := -expon_base + 1 + result; when others => expon := SIGNED(arg (exponent_width - 1 downto 0)); expon(exponent_width-1) := not expon(exponent_width-1); expon := expon + 1; result := to_integer (expon); end case classcase; return result; end function Logb; -- returns the unbiased exponent of x function Logb ( x : UNRESOLVED_float) -- floating point input return UNRESOLVED_SIGNED is constant exponent_width : NATURAL := x'high; -- length of FP output exponent variable result : SIGNED (exponent_width - 1 downto 0); -- result begin -- Just return the exponent. result := to_signed (Logb (x), exponent_width); return result; end function Logb; -- returns the next representable neighbor of x in the direction toward y function Nextafter ( x, y : UNRESOLVED_float; -- floating point input constant check_error : BOOLEAN := float_check_error; -- check for errors constant denormalize : BOOLEAN := float_denormalize) return UNRESOLVED_float is constant fraction_width : NATURAL := -mine(x'low, x'low); -- length of FP output fraction constant exponent_width : NATURAL := x'high; -- length of FP output exponent function "=" ( l, r : UNRESOLVED_float) -- inputs return BOOLEAN is begin -- function "=" return eq (l => l, r => r, check_error => false); end function "="; function ">" ( l, r : UNRESOLVED_float) -- inputs return BOOLEAN is begin -- function ">" return gt (l => l, r => r, check_error => false); end function ">"; variable fract : UNSIGNED (fraction_width-1 downto 0); variable expon : UNSIGNED (exponent_width-1 downto 0); variable sign : STD_ULOGIC; variable result : UNRESOLVED_float (exponent_width downto -fraction_width); variable validfpx, validfpy : valid_fpstate; -- Valid FP state begin -- fp_Nextafter -- If Y > X, add one to the fraction, otherwise subtract. validfpx := classfp (x, check_error); validfpy := classfp (y, check_error); if validfpx = isx or validfpy = isx then result := (others => 'X'); return result; elsif (validfpx = nan or validfpy = nan) then return nanfp (fraction_width => fraction_width, exponent_width => exponent_width); elsif (validfpx = quiet_nan or validfpy = quiet_nan) then return qnanfp (fraction_width => fraction_width, exponent_width => exponent_width); elsif x = y then -- Return X return x; else fract := UNSIGNED (to_slv (x (-1 downto -fraction_width))); -- Fraction expon := UNSIGNED (x (exponent_width - 1 downto 0)); -- exponent sign := x(exponent_width); -- sign bit if (y > x) then -- Increase the number given if validfpx = neg_inf then -- return most negative number expon := (others => '1'); expon (0) := '0'; fract := (others => '1'); elsif validfpx = pos_zero or validfpx = neg_zero then -- return smallest denormal number sign := '0'; expon := (others => '0'); fract := (others => '0'); fract(0) := '1'; elsif validfpx = pos_normal then if and (fract) = '1' then -- fraction is all "1". if and (expon (exponent_width-1 downto 1)) = '1' and expon (0) = '0' then -- Exponent is one away from infinity. assert NO_WARNING report FLOAT_GENERIC_PKG'instance_name & "FP_NEXTAFTER: NextAfter overflow" severity warning; return pos_inffp (fraction_width => fraction_width, exponent_width => exponent_width); else expon := expon + 1; fract := (others => '0'); end if; else fract := fract + 1; end if; elsif validfpx = pos_denormal then if and (fract) = '1' then -- fraction is all "1". -- return smallest possible normal number expon := (others => '0'); expon(0) := '1'; fract := (others => '0'); else fract := fract + 1; end if; elsif validfpx = neg_normal then if or (fract) = '0' then -- fraction is all "0". if or (expon (exponent_width-1 downto 1)) = '0' and expon (0) = '1' then -- Smallest exponent -- return the largest negative denormal number expon := (others => '0'); fract := (others => '1'); else expon := expon - 1; fract := (others => '1'); end if; else fract := fract - 1; end if; elsif validfpx = neg_denormal then if or (fract(fract'high downto 1)) = '0' and fract (0) = '1' then -- Smallest possible fraction return zerofp (fraction_width => fraction_width, exponent_width => exponent_width); else fract := fract - 1; end if; end if; else -- Decrease the number if validfpx = pos_inf then -- return most positive number expon := (others => '1'); expon (0) := '0'; fract := (others => '1'); elsif validfpx = pos_zero or classfp (x) = neg_zero then -- return smallest negative denormal number sign := '1'; expon := (others => '0'); fract := (others => '0'); fract(0) := '1'; elsif validfpx = neg_normal then if and (fract) = '1' then -- fraction is all "1". if and (expon (exponent_width-1 downto 1)) = '1' and expon (0) = '0' then -- Exponent is one away from infinity. assert NO_WARNING report FLOAT_GENERIC_PKG'instance_name & "FP_NEXTAFTER: NextAfter overflow" severity warning; return neg_inffp (fraction_width => fraction_width, exponent_width => exponent_width); else expon := expon + 1; -- Fraction overflow fract := (others => '0'); end if; else fract := fract + 1; end if; elsif validfpx = neg_denormal then if and (fract) = '1' then -- fraction is all "1". -- return smallest possible normal number expon := (others => '0'); expon(0) := '1'; fract := (others => '0'); else fract := fract + 1; end if; elsif validfpx = pos_normal then if or (fract) = '0' then -- fraction is all "0". if or (expon (exponent_width-1 downto 1)) = '0' and expon (0) = '1' then -- Smallest exponent -- return the largest positive denormal number expon := (others => '0'); fract := (others => '1'); else expon := expon - 1; fract := (others => '1'); end if; else fract := fract - 1; end if; elsif validfpx = pos_denormal then if or (fract(fract'high downto 1)) = '0' and fract (0) = '1' then -- Smallest possible fraction return zerofp (fraction_width => fraction_width, exponent_width => exponent_width); else fract := fract - 1; end if; end if; end if; result (-1 downto -fraction_width) := UNRESOLVED_float(fract); result (exponent_width -1 downto 0) := UNRESOLVED_float(expon); result (exponent_width) := sign; return result; end if; end function Nextafter; -- Returns True if X is unordered with Y. function Unordered ( x, y : UNRESOLVED_float) -- floating point input return BOOLEAN is variable lfptype, rfptype : valid_fpstate; begin lfptype := classfp (x); rfptype := classfp (y); if (lfptype = nan or lfptype = quiet_nan or rfptype = nan or rfptype = quiet_nan or lfptype = isx or rfptype = isx) then return true; else return false; end if; end function Unordered; function Finite ( x : UNRESOLVED_float) return BOOLEAN is variable fp_state : valid_fpstate; -- fp state begin fp_state := Classfp (x); if (fp_state = pos_inf) or (fp_state = neg_inf) then return true; else return false; end if; end function Finite; function Isnan ( x : UNRESOLVED_float) return BOOLEAN is variable fp_state : valid_fpstate; -- fp state begin fp_state := Classfp (x); if (fp_state = nan) or (fp_state = quiet_nan) then return true; else return false; end if; end function Isnan; -- Function to return constants. function zerofp ( constant exponent_width : NATURAL := float_exponent_width; -- exponent constant fraction_width : NATURAL := float_fraction_width) -- fraction return UNRESOLVED_float is constant result : UNRESOLVED_float (exponent_width downto -fraction_width) := (others => '0'); -- zero begin return result; end function zerofp; function nanfp ( constant exponent_width : NATURAL := float_exponent_width; -- exponent constant fraction_width : NATURAL := float_fraction_width) -- fraction return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width) := (others => '0'); -- zero begin result (exponent_width-1 downto 0) := (others => '1'); -- Exponent all "1" result (-1) := '1'; -- MSB of Fraction "1" -- Note: From W. Khan "IEEE Standard 754 for Binary Floating Point" -- The difference between a signaling NAN and a quiet NAN is that -- the MSB of the Fraction is a "1" in a Signaling NAN, and is a -- "0" in a quiet NAN. return result; end function nanfp; function qnanfp ( constant exponent_width : NATURAL := float_exponent_width; -- exponent constant fraction_width : NATURAL := float_fraction_width) -- fraction return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width) := (others => '0'); -- zero begin result (exponent_width-1 downto 0) := (others => '1'); -- Exponent all "1" result (-fraction_width) := '1'; -- LSB of Fraction "1" -- (Could have been any bit) return result; end function qnanfp; function pos_inffp ( constant exponent_width : NATURAL := float_exponent_width; -- exponent constant fraction_width : NATURAL := float_fraction_width) -- fraction return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width) := (others => '0'); -- zero begin result (exponent_width-1 downto 0) := (others => '1'); -- Exponent all "1" return result; end function pos_inffp; function neg_inffp ( constant exponent_width : NATURAL := float_exponent_width; -- exponent constant fraction_width : NATURAL := float_fraction_width) -- fraction return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width) := (others => '0'); -- zero begin result (exponent_width downto 0) := (others => '1'); -- top bits all "1" return result; end function neg_inffp; function neg_zerofp ( constant exponent_width : NATURAL := float_exponent_width; -- exponent constant fraction_width : NATURAL := float_fraction_width) -- fraction return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width) := (others => '0'); -- zero begin result (exponent_width) := '1'; return result; end function neg_zerofp; -- size_res versions function zerofp ( size_res : UNRESOLVED_float) -- variable is only use for sizing return UNRESOLVED_float is begin return zerofp ( exponent_width => size_res'high, fraction_width => -size_res'low); end function zerofp; function nanfp ( size_res : UNRESOLVED_float) -- variable is only use for sizing return UNRESOLVED_float is begin return nanfp ( exponent_width => size_res'high, fraction_width => -size_res'low); end function nanfp; function qnanfp ( size_res : UNRESOLVED_float) -- variable is only use for sizing return UNRESOLVED_float is begin return qnanfp ( exponent_width => size_res'high, fraction_width => -size_res'low); end function qnanfp; function pos_inffp ( size_res : UNRESOLVED_float) -- variable is only use for sizing return UNRESOLVED_float is begin return pos_inffp ( exponent_width => size_res'high, fraction_width => -size_res'low); end function pos_inffp; function neg_inffp ( size_res : UNRESOLVED_float) -- variable is only use for sizing return UNRESOLVED_float is begin return neg_inffp ( exponent_width => size_res'high, fraction_width => -size_res'low); end function neg_inffp; function neg_zerofp ( size_res : UNRESOLVED_float) -- variable is only use for sizing return UNRESOLVED_float is begin return neg_zerofp ( exponent_width => size_res'high, fraction_width => -size_res'low); end function neg_zerofp; -- Textio functions -- purpose: writes float into a line (NOTE changed basetype) type MVL9plus is ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-', error); type char_indexed_by_MVL9 is array (STD_ULOGIC) of CHARACTER; type MVL9_indexed_by_char is array (CHARACTER) of STD_ULOGIC; type MVL9plus_indexed_by_char is array (CHARACTER) of MVL9plus; constant NBSP : CHARACTER := CHARACTER'val(160); -- space character constant MVL9_to_char : char_indexed_by_MVL9 := "UX01ZWLH-"; constant char_to_MVL9 : MVL9_indexed_by_char := ('U' => 'U', 'X' => 'X', '0' => '0', '1' => '1', 'Z' => 'Z', 'W' => 'W', 'L' => 'L', 'H' => 'H', '-' => '-', others => 'U'); constant char_to_MVL9plus : MVL9plus_indexed_by_char := ('U' => 'U', 'X' => 'X', '0' => '0', '1' => '1', 'Z' => 'Z', 'W' => 'W', 'L' => 'L', 'H' => 'H', '-' => '-', others => error); -- purpose: Skips white space procedure skip_whitespace ( L : inout LINE) is variable readOk : BOOLEAN; variable c : CHARACTER; begin while L /= null and L.all'length /= 0 loop if (L.all(1) = ' ' or L.all(1) = NBSP or L.all(1) = HT) then read (l, c, readOk); else exit; end if; end loop; end procedure skip_whitespace; -- purpose: Checks the punctuation in a line procedure check_punctuation ( arg : in STRING; colon : out BOOLEAN; -- There was a colon in the line dot : out BOOLEAN; -- There was a dot in the line good : out BOOLEAN; -- True if enough characters found chars : in INTEGER) is -- Examples. Legal inputs are "0000000", "0000.000", "0:000:000" alias xarg : STRING (1 to arg'length) is arg; -- make it downto range variable icolon, idot : BOOLEAN; -- internal variable j : INTEGER := 0; -- charters read begin good := false; icolon := false; idot := false; for i in 1 to arg'length loop if xarg(i) = ' ' or xarg(i) = NBSP or xarg(i) = HT or j = chars then exit; elsif xarg(i) = ':' then icolon := true; elsif xarg(i) = '.' then idot := true; elsif xarg (i) /= '_' then j := j + 1; end if; end loop; if j = chars then good := true; -- There are enough charactes to read end if; colon := icolon; if idot and icolon then dot := false; else dot := idot; end if; end procedure check_punctuation; -- purpose: Searches a line for a ":" and replaces it with a ".". procedure fix_colon ( arg : inout STRING; chars : in integer) is alias xarg : STRING (1 to arg'length) is arg; -- make it downto range variable j : INTEGER := 0; -- charters read begin for i in 1 to arg'length loop if xarg(i) = ' ' or xarg(i) = NBSP or xarg(i) = HT or j > chars then exit; elsif xarg(i) = ':' then xarg (i) := '.'; elsif xarg (i) /= '_' then j := j + 1; end if; end loop; end procedure fix_colon; procedure WRITE ( L : inout LINE; -- input line VALUE : in UNRESOLVED_float; -- floating point input JUSTIFIED : in SIDE := right; FIELD : in WIDTH := 0) is variable s : STRING(1 to value'high - value'low +3); variable sindx : INTEGER; begin -- function write s(1) := MVL9_to_char(STD_ULOGIC(VALUE(VALUE'high))); s(2) := ':'; sindx := 3; for i in VALUE'high-1 downto 0 loop s(sindx) := MVL9_to_char(STD_ULOGIC(VALUE(i))); sindx := sindx + 1; end loop; s(sindx) := ':'; sindx := sindx + 1; for i in -1 downto VALUE'low loop s(sindx) := MVL9_to_char(STD_ULOGIC(VALUE(i))); sindx := sindx + 1; end loop; WRITE (L, s, JUSTIFIED, FIELD); end procedure WRITE; procedure READ (L : inout LINE; VALUE : out UNRESOLVED_float) is -- Possible data: 0:0000:0000000 -- 000000000000 variable c : CHARACTER; variable mv : UNRESOLVED_float (VALUE'range); variable readOk : BOOLEAN; variable lastu : BOOLEAN := false; -- last character was an "_" variable i : INTEGER; -- index variable begin -- READ VALUE := (VALUE'range => 'U'); -- initialize to a "U" Skip_whitespace (L); READ (l, c, readOk); if VALUE'length > 0 then i := value'high; readloop : loop if readOk = false then -- Bail out if there was a bad read report float_generic_pkg'instance_name & "READ(float): " & "Error end of file encountered." severity error; return; elsif c = ' ' or c = CR or c = HT then -- reading done. if (i /= value'low) then report float_generic_pkg'instance_name & "READ(float): " & "Warning: Value truncated." severity warning; return; end if; elsif c = '_' then if i = value'high then -- Begins with an "_" report float_generic_pkg'instance_name & "READ(float): " & "String begins with an ""_""" severity error; return; elsif lastu then -- "__" detected report float_generic_pkg'instance_name & "READ(float): " & "Two underscores detected in input string ""__""" severity error; return; else lastu := true; end if; elsif c = ':' or c = '.' then -- separator, ignore if not (i = -1 or i = value'high-1) then report float_generic_pkg'instance_name & "READ(float): " & "Warning: Separator point does not match number format: '" & c & "' encountered at location " & INTEGER'image(i) & "." severity warning; end if; lastu := false; elsif (char_to_MVL9plus(c) = error) then report float_generic_pkg'instance_name & "READ(float): " & "Error: Character '" & c & "' read, expected STD_ULOGIC literal." severity error; return; else mv (i) := char_to_MVL9(c); i := i - 1; if i < value'low then VALUE := mv; return; end if; lastu := false; end if; READ (l, c, readOk); end loop readloop; end if; end procedure READ; procedure READ (L : inout LINE; VALUE : out UNRESOLVED_float; GOOD : out BOOLEAN) is -- Possible data: 0:0000:0000000 -- 000000000000 variable c : CHARACTER; variable mv : UNRESOLVED_float (VALUE'range); variable lastu : BOOLEAN := false; -- last character was an "_" variable i : INTEGER; -- index variable variable readOk : BOOLEAN; begin -- READ VALUE := (VALUE'range => 'U'); -- initialize to a "U" Skip_whitespace (L); READ (l, c, readOk); if VALUE'length > 0 then i := value'high; good := false; readloop : loop if readOk = false then -- Bail out if there was a bad read return; elsif c = ' ' or c = CR or c = HT then -- reading done return; elsif c = '_' then if i = 0 then -- Begins with an "_" return; elsif lastu then -- "__" detected return; else lastu := true; end if; elsif c = ':' or c = '.' then -- separator, ignore -- good := (i = -1 or i = value'high-1); lastu := false; elsif (char_to_MVL9plus(c) = error) then return; else mv (i) := char_to_MVL9(c); i := i - 1; if i < value'low then good := true; VALUE := mv; return; end if; lastu := false; end if; READ (l, c, readOk); end loop readloop; else good := true; -- read into a null array end if; end procedure READ; procedure OWRITE ( L : inout LINE; -- access type (pointer) VALUE : in UNRESOLVED_float; -- value to write JUSTIFIED : in SIDE := right; -- which side to justify text FIELD : in WIDTH := 0) is -- width of field begin WRITE (L => L, VALUE => to_ostring(VALUE), JUSTIFIED => JUSTIFIED, FIELD => FIELD); end procedure OWRITE; procedure OREAD (L : inout LINE; VALUE : out UNRESOLVED_float) is constant ne : INTEGER := ((value'length+2)/3) * 3; -- pad variable slv : STD_LOGIC_VECTOR (ne-1 downto 0); -- slv variable slvu : ufixed (VALUE'range); -- Unsigned fixed point variable c : CHARACTER; variable ok : BOOLEAN; variable nybble : STD_LOGIC_VECTOR (2 downto 0); -- 3 bits variable colon, dot : BOOLEAN; begin VALUE := (VALUE'range => 'U'); -- initialize to a "U" Skip_whitespace (L); if VALUE'length > 0 then check_punctuation (arg => L.all, colon => colon, dot => dot, good => ok, chars => ne/3); if not ok then report float_generic_pkg'instance_name & "OREAD: " & "short string encounted: " & L.all & " needs to have " & integer'image (ne/3) & " valid octal characters." severity error; return; elsif dot then OREAD (L, slvu, ok); -- read it like a UFIXED number if not ok then report float_generic_pkg'instance_name & "OREAD: " & "error encounted reading STRING " & L.all severity error; return; else VALUE := UNRESOLVED_float (slvu); end if; elsif colon then OREAD (L, nybble, ok); -- read the sign bit if not ok then report float_generic_pkg'instance_name & "OREAD: " & "End of string encountered" severity error; return; elsif nybble (2 downto 1) /= "00" then report float_generic_pkg'instance_name & "OREAD: " & "Illegal sign bit STRING encounted " severity error; return; end if; read (l, c, ok); -- read the colon fix_colon (L.all, ne/3); -- replaces the colon with a ".". OREAD (L, slvu (slvu'high-1 downto slvu'low), ok); -- read it like a UFIXED number if not ok then report float_generic_pkg'instance_name & "OREAD: " & "error encounted reading STRING " & L.all severity error; return; else slvu (slvu'high) := nybble (0); VALUE := UNRESOLVED_float (slvu); end if; else OREAD (L, slv, ok); if not ok then report float_generic_pkg'instance_name & "OREAD: " & "Error encounted during read" severity error; return; end if; if (or (slv(ne-1 downto VALUE'high-VALUE'low+1)) = '1') then report float_generic_pkg'instance_name & "OREAD: " & "Vector truncated." severity error; return; end if; VALUE := to_float (slv(VALUE'high-VALUE'low downto 0), VALUE'high, -VALUE'low); end if; end if; end procedure OREAD; procedure OREAD(L : inout LINE; VALUE : out UNRESOLVED_float; GOOD : out BOOLEAN) is constant ne : INTEGER := ((value'length+2)/3) * 3; -- pad variable slv : STD_LOGIC_VECTOR (ne-1 downto 0); -- slv variable slvu : ufixed (VALUE'range); -- Unsigned fixed point variable c : CHARACTER; variable ok : BOOLEAN; variable nybble : STD_LOGIC_VECTOR (2 downto 0); -- 3 bits variable colon, dot : BOOLEAN; begin VALUE := (VALUE'range => 'U'); -- initialize to a "U" GOOD := false; Skip_whitespace (L); if VALUE'length > 0 then check_punctuation (arg => L.all, colon => colon, dot => dot, good => ok, chars => ne/3); if not ok then return; elsif dot then OREAD (L, slvu, ok); -- read it like a UFIXED number if not ok then return; else VALUE := UNRESOLVED_float (slvu); end if; elsif colon then OREAD (L, nybble, ok); -- read the sign bit if not ok then return; elsif nybble (2 downto 1) /= "00" then return; end if; read (l, c, ok); -- read the colon fix_colon (L.all, ne/3); -- replaces the colon with a ".". OREAD (L, slvu (slvu'high-1 downto slvu'low), ok); -- read it like a UFIXED number if not ok then return; else slvu (slvu'high) := nybble (0); VALUE := UNRESOLVED_float (slvu); end if; else OREAD (L, slv, ok); if not ok then return; end if; if (or (slv(ne-1 downto VALUE'high-VALUE'low+1)) = '1') then return; end if; VALUE := to_float (slv(VALUE'high-VALUE'low downto 0), VALUE'high, -VALUE'low); end if; GOOD := true; end if; end procedure OREAD; procedure HWRITE ( L : inout LINE; -- access type (pointer) VALUE : in UNRESOLVED_float; -- value to write JUSTIFIED : in SIDE := right; -- which side to justify text FIELD : in WIDTH := 0) is -- width of field begin WRITE (L => L, VALUE => to_hstring(VALUE), JUSTIFIED => JUSTIFIED, FIELD => FIELD); end procedure HWRITE; procedure HREAD (L : inout LINE; VALUE : out UNRESOLVED_float) is constant ne : INTEGER := ((value'length+3)/4) * 4; -- pad variable slv : STD_LOGIC_VECTOR (ne-1 downto 0); -- slv variable slvu : ufixed (VALUE'range); -- Unsigned fixed point variable c : CHARACTER; variable ok : BOOLEAN; variable nybble : STD_LOGIC_VECTOR (3 downto 0); -- 4 bits variable colon, dot : BOOLEAN; begin VALUE := (VALUE'range => 'U'); -- initialize to a "U" Skip_whitespace (L); if VALUE'length > 0 then check_punctuation (arg => L.all, colon => colon, dot => dot, good => ok, chars => ne/4); if not ok then report float_generic_pkg'instance_name & "HREAD: " & "short string encounted: " & L.all & " needs to have " & integer'image (ne/4) & " valid hex characters." severity error; return; elsif dot then HREAD (L, slvu, ok); -- read it like a UFIXED number if not ok then report float_generic_pkg'instance_name & "HREAD: " & "error encounted reading STRING " & L.all severity error; return; else VALUE := UNRESOLVED_float (slvu); end if; elsif colon then HREAD (L, nybble, ok); -- read the sign bit if not ok then report float_generic_pkg'instance_name & "HREAD: " & "End of string encountered" severity error; return; elsif nybble (3 downto 1) /= "000" then report float_generic_pkg'instance_name & "HREAD: " & "Illegal sign bit STRING encounted " severity error; return; end if; read (l, c, ok); -- read the colon fix_colon (L.all, ne/4); -- replaces the colon with a ".". HREAD (L, slvu (slvu'high-1 downto slvu'low), ok); -- read it like a UFIXED number if not ok then report float_generic_pkg'instance_name & "HREAD: " & "error encounted reading STRING " & L.all severity error; return; else slvu (slvu'high) := nybble (0); VALUE := UNRESOLVED_float (slvu); end if; else HREAD (L, slv, ok); if not ok then report float_generic_pkg'instance_name & "HREAD: " & "Error encounted during read" severity error; return; end if; if (or (slv(ne-1 downto VALUE'high-VALUE'low+1)) = '1') then report float_generic_pkg'instance_name & "HREAD: " & "Vector truncated." severity error; return; end if; VALUE := to_float (slv(VALUE'high-VALUE'low downto 0), VALUE'high, -VALUE'low); end if; end if; end procedure HREAD; procedure HREAD (L : inout LINE; VALUE : out UNRESOLVED_float; GOOD : out BOOLEAN) is constant ne : INTEGER := ((value'length+3)/4) * 4; -- pad variable slv : STD_LOGIC_VECTOR (ne-1 downto 0); -- slv variable slvu : ufixed (VALUE'range); -- Unsigned fixed point variable c : CHARACTER; variable ok : BOOLEAN; variable nybble : STD_LOGIC_VECTOR (3 downto 0); -- 4 bits variable colon, dot : BOOLEAN; begin VALUE := (VALUE'range => 'U'); -- initialize to a "U" GOOD := false; Skip_whitespace (L); if VALUE'length > 0 then check_punctuation (arg => L.all, colon => colon, dot => dot, good => ok, chars => ne/4); if not ok then return; elsif dot then HREAD (L, slvu, ok); -- read it like a UFIXED number if not ok then return; else VALUE := UNRESOLVED_float (slvu); end if; elsif colon then HREAD (L, nybble, ok); -- read the sign bit if not ok then return; elsif nybble (3 downto 1) /= "000" then return; end if; read (l, c, ok); -- read the colon fix_colon (L.all, ne/4); -- replaces the colon with a ".". HREAD (L, slvu (slvu'high-1 downto slvu'low), ok); -- read it like a UFIXED number if not ok then return; else slvu (slvu'high) := nybble (0); VALUE := UNRESOLVED_float (slvu); end if; else HREAD (L, slv, ok); if not ok then return; end if; if (or (slv(ne-1 downto VALUE'high-VALUE'low+1)) = '1') then return; end if; VALUE := to_float (slv(VALUE'high-VALUE'low downto 0), VALUE'high, -VALUE'low); end if; GOOD := true; end if; end procedure HREAD; function to_string (value : UNRESOLVED_float) return STRING is variable s : STRING(1 to value'high - value'low +3); variable sindx : INTEGER; begin -- function write s(1) := MVL9_to_char(STD_ULOGIC(VALUE(VALUE'high))); s(2) := ':'; sindx := 3; for i in VALUE'high-1 downto 0 loop s(sindx) := MVL9_to_char(STD_ULOGIC(VALUE(i))); sindx := sindx + 1; end loop; s(sindx) := ':'; sindx := sindx + 1; for i in -1 downto VALUE'low loop s(sindx) := MVL9_to_char(STD_ULOGIC(VALUE(i))); sindx := sindx + 1; end loop; return s; end function to_string; function to_hstring (value : UNRESOLVED_float) return STRING is variable slv : STD_LOGIC_VECTOR (value'length-1 downto 0); begin floop : for i in slv'range loop slv(i) := to_X01Z (value(i + value'low)); end loop floop; return to_hstring (slv); end function to_hstring; function to_ostring (value : UNRESOLVED_float) return STRING is variable slv : STD_LOGIC_VECTOR (value'length-1 downto 0); begin floop : for i in slv'range loop slv(i) := to_X01Z (value(i + value'low)); end loop floop; return to_ostring (slv); end function to_ostring; function from_string ( bstring : STRING; -- binary string constant exponent_width : NATURAL := float_exponent_width; constant fraction_width : NATURAL := float_fraction_width) return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width); variable L : LINE; variable good : BOOLEAN; begin L := new STRING'(bstring); READ (L, result, good); deallocate (L); assert (good) report FLOAT_GENERIC_PKG'instance_name & "from_string: Bad string " & bstring severity error; return result; end function from_string; function from_ostring ( ostring : STRING; -- Octal string constant exponent_width : NATURAL := float_exponent_width; constant fraction_width : NATURAL := float_fraction_width) return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width); variable L : LINE; variable good : BOOLEAN; begin L := new STRING'(ostring); OREAD (L, result, good); deallocate (L); assert (good) report FLOAT_GENERIC_PKG'instance_name & "from_ostring: Bad string " & ostring severity error; return result; end function from_ostring; function from_hstring ( hstring : STRING; -- hex string constant exponent_width : NATURAL := float_exponent_width; constant fraction_width : NATURAL := float_fraction_width) return UNRESOLVED_float is variable result : UNRESOLVED_float (exponent_width downto -fraction_width); variable L : LINE; variable good : BOOLEAN; begin L := new STRING'(hstring); HREAD (L, result, good); deallocate (L); assert (good) report FLOAT_GENERIC_PKG'instance_name & "from_hstring: Bad string " & hstring severity error; return result; end function from_hstring; function from_string ( bstring : STRING; -- binary string size_res : UNRESOLVED_float) -- used for sizing only return UNRESOLVED_float is begin return from_string (bstring => bstring, exponent_width => size_res'high, fraction_width => -size_res'low); end function from_string; function from_ostring ( ostring : STRING; -- Octal string size_res : UNRESOLVED_float) -- used for sizing only return UNRESOLVED_float is begin return from_ostring (ostring => ostring, exponent_width => size_res'high, fraction_width => -size_res'low); end function from_ostring; function from_hstring ( hstring : STRING; -- hex string size_res : UNRESOLVED_float) -- used for sizing only return UNRESOLVED_float is begin return from_hstring (hstring => hstring, exponent_width => size_res'high, fraction_width => -size_res'low); end function from_hstring; end package body float_generic_pkg;