diff options
-rw-r--r-- | libraries/redist1164/std_logic_1164-body.v87 | 713 | ||||
-rw-r--r-- | libraries/redist1164/std_logic_1164-body.v93 | 769 | ||||
-rw-r--r-- | libraries/redist1164/std_logic_1164.v87 | 143 | ||||
-rw-r--r-- | libraries/redist1164/std_logic_1164.v93 | 143 |
4 files changed, 1768 insertions, 0 deletions
diff --git a/libraries/redist1164/std_logic_1164-body.v87 b/libraries/redist1164/std_logic_1164-body.v87 new file mode 100644 index 0000000..739cb9b --- /dev/null +++ b/libraries/redist1164/std_logic_1164-body.v87 @@ -0,0 +1,713 @@ +-- This file was generated from std_logic_1164-body.proto +-- This is an implementation of -*- vhdl -*- ieee.std_logic_1164 based only +-- on the specifications. This file is part of GHDL. +-- Copyright (C) 2015 Tristan Gingold +-- +-- GHDL is free software; you can redistribute it and/or modify it under +-- the terms of the GNU General Public License as published by the Free +-- Software Foundation; either version 2, or (at your option) any later +-- version. +-- +-- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY +-- WARRANTY; without even the implied warranty of MERCHANTABILITY or +-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +-- for more details. +-- +-- You should have received a copy of the GNU General Public License +-- along with GCC; see the file COPYING3. If not see +-- <http://www.gnu.org/licenses/>. + +-- This is a template file. To avoid errors and duplication, the python +-- script build.py generate most of the bodies. + +package body std_logic_1164 is + + type table_1d is array (std_ulogic) of std_ulogic; + type table_2d is array (std_ulogic, std_ulogic) of std_ulogic; + + constant resolution : table_2d := + -- UX01ZWLH- + ("UUUUUUUUU", -- U + "UXXXXXXXX", -- X + "UX0X0000X", -- 0 + "UXX11111X", -- 1 + "UX01ZWLHX", -- Z + "UX01WWWWX", -- W + "UX01LWLWX", -- L + "UX01HWWHX", -- H + "UXXXXXXXX" -- - + ); + + function resolved (s : std_ulogic_vector) return std_ulogic + is + variable res : std_ulogic := 'Z'; + begin + for I in s'range loop + res := resolution (res, s (I)); + end loop; + return res; + end resolved; + + + constant and_table : table_2d := + -- UX01ZWLH- + ("UU0UUU0UU", -- U + "UX0XXX0XX", -- X + "000000000", -- 0 + "UX01XX01X", -- 1 + "UX0XXX0XX", -- Z + "UX0XXX0XX", -- W + "000000000", -- L + "UX01XX01X", -- H + "UX0XXX0XX" -- - + ); + + constant nand_table : table_2d := + -- UX01ZWLH- + ("UU1UUU1UU", -- U + "UX1XXX1XX", -- X + "111111111", -- 0 + "UX10XX10X", -- 1 + "UX1XXX1XX", -- Z + "UX1XXX1XX", -- W + "111111111", -- L + "UX10XX10X", -- H + "UX1XXX1XX" -- - + ); + + constant or_table : table_2d := + -- UX01ZWLH- + ("UUU1UUU1U", -- U + "UXX1XXX1X", -- X + "UX01XX01X", -- 0 + "111111111", -- 1 + "UXX1XXX1X", -- Z + "UXX1XXX1X", -- W + "UX01XX01X", -- L + "111111111", -- H + "UXX1XXX1X" -- - + ); + + constant nor_table : table_2d := + -- UX01ZWLH- + ("UUU0UUU0U", -- U + "UXX0XXX0X", -- X + "UX10XX10X", -- 0 + "000000000", -- 1 + "UXX0XXX0X", -- Z + "UXX0XXX0X", -- W + "UX10XX10X", -- L + "000000000", -- H + "UXX0XXX0X" -- - + ); + + constant xor_table : table_2d := + -- UX01ZWLH- + ("UUUUUUUUU", -- U + "UXXXXXXXX", -- X + "UX01XX01X", -- 0 + "UX10XX10X", -- 1 + "UXXXXXXXX", -- Z + "UXXXXXXXX", -- W + "UX01XX01X", -- L + "UX10XX10X", -- H + "UXXXXXXXX" -- - + ); + + constant not_table : table_1d := + -- UX01ZWLH- + "UX10XX10X"; + + + function "and" (l, r : std_ulogic) return UX01 is + begin + return and_table (l, r); + end "and"; + + function "nand" (l, r : std_ulogic) return UX01 is + begin + return nand_table (l, r); + end "nand"; + + function "or" (l, r : std_ulogic) return UX01 is + begin + return or_table (l, r); + end "or"; + + function "nor" (l, r : std_ulogic) return UX01 is + begin + return nor_table (l, r); + end "nor"; + + function "xor" (l, r : std_ulogic) return UX01 is + begin + return xor_table (l, r); + end "xor"; + + function "not" (l : std_ulogic) return UX01 is + begin + return not_table (l); + end "not"; + + function "and" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'and' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := and_table (la (I), ra (I)); + end loop; + end if; + return res; + end "and"; + + function "nand" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'nand' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := nand_table (la (I), ra (I)); + end loop; + end if; + return res; + end "nand"; + + function "or" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'or' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := or_table (la (I), ra (I)); + end loop; + end if; + return res; + end "or"; + + function "nor" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'nor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := nor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "nor"; + + function "xor" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'xor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := xor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "xor"; + + function "not" (l : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + variable res : res_type; + begin + for I in res_type'range loop + res (I) := not_table (la (I)); + end loop; + return res; + end "not"; + + function "and" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'and' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := and_table (la (I), ra (I)); + end loop; + end if; + return res; + end "and"; + + function "nand" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'nand' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := nand_table (la (I), ra (I)); + end loop; + end if; + return res; + end "nand"; + + function "or" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'or' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := or_table (la (I), ra (I)); + end loop; + end if; + return res; + end "or"; + + function "nor" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'nor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := nor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "nor"; + + function "xor" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'xor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := xor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "xor"; + + function "not" (l : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + variable res : res_type; + begin + for I in res_type'range loop + res (I) := not_table (la (I)); + end loop; + return res; + end "not"; + + -- Conversion functions. + -- The result range (for vectors) is S'Length - 1 downto 0. + -- XMAP is return for values not in '0', '1', 'L', 'H'. + function to_bit (s : std_ulogic; xmap : bit := '0') return bit is + begin + case s is + when '0' | 'L' => + return '0'; + when '1' | 'H' => + return '1'; + when others => + return xmap; + end case; + end to_bit; + + type bit_to_std_table is array (bit) of std_ulogic; + constant bit_to_std : bit_to_std_table := "01"; + + + function to_bitvector (s : std_ulogic_vector; xmap : bit := '0') + return bit_vector + is + subtype res_range is natural range s'length - 1 downto 0; + alias as : std_ulogic_vector (res_range) is s; + variable res : bit_vector (res_range); + variable b : bit; + begin + for I in res_range loop + -- Inline for efficiency. + case as (I) is + when '0' | 'L' => + b := '0'; + when '1' | 'H' => + b := '1'; + when others => + b := xmap; + end case; + res (I) := b; + end loop; + return res; + end to_bitvector; + + function to_bitvector (s : std_logic_vector; xmap : bit := '0') + return bit_vector + is + subtype res_range is natural range s'length - 1 downto 0; + alias as : std_logic_vector (res_range) is s; + variable res : bit_vector (res_range); + variable b : bit; + begin + for I in res_range loop + -- Inline for efficiency. + case as (I) is + when '0' | 'L' => + b := '0'; + when '1' | 'H' => + b := '1'; + when others => + b := xmap; + end case; + res (I) := b; + end loop; + return res; + end to_bitvector; + + function to_stdulogicvector (b : bit_vector) return std_ulogic_vector is + subtype res_range is natural range b'length - 1 downto 0; + alias ab : bit_vector (res_range) is b; + variable res : std_ulogic_vector (res_range); + begin + for I in res_range loop + res (I) := bit_to_std (ab (I)); + end loop; + return res; + end to_stdulogicvector; + + function to_stdlogicvector (b : bit_vector) return std_logic_vector is + subtype res_range is natural range b'length - 1 downto 0; + alias ab : bit_vector (res_range) is b; + variable res : std_logic_vector (res_range); + begin + for I in res_range loop + res (I) := bit_to_std (ab (I)); + end loop; + return res; + end to_stdlogicvector; + + function to_stdulogicvector (b : std_logic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (b'length - 1 downto 0); + begin + return res_type (b); + end to_stdulogicvector; + + function to_stdlogicvector (b : std_ulogic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (b'length - 1 downto 0); + begin + return res_type (b); + end to_stdlogicvector; + + function to_stdulogic (b : bit) return std_ulogic is + begin + return bit_to_std (b); + end to_stdulogic; + + -- Normalization. + type table_std_x01 is array (std_ulogic) of X01; + constant std_to_x01 : table_std_x01 := ('U' | 'X' | 'Z' | 'W' | '-' => 'X', + '0' | 'L' => '0', + '1' | 'H' => '1'); + + type table_bit_x01 is array (bit) of X01; + constant bit_to_x01 : table_bit_x01 := ('0' => '0', + '1' => '1'); + + + type table_std_x01z is array (std_ulogic) of X01Z; + constant std_to_x01z : table_std_x01 := ('U' | 'X' | 'W' | '-' => 'X', + '0' | 'L' => '0', + '1' | 'H' => '1', + 'Z' => 'Z'); + + type table_std_ux01 is array (std_ulogic) of UX01; + constant std_to_ux01 : table_std_ux01 := ('U' => 'U', + 'X' | 'Z' | 'W' | '-' => 'X', + '0' | 'L' => '0', + '1' | 'H' => '1'); + + + function to_X01 (s : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_x01 (sa (i)); + end loop; + return res; + end to_X01; + + function to_X01 (s : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_x01 (sa (i)); + end loop; + return res; + end to_X01; + + function to_X01 (s : std_ulogic) return X01 is + begin + return std_to_x01 (s); + end to_X01; + + function to_X01 (b : bit_vector) return std_ulogic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_ulogic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_X01; + + function to_X01 (b : bit_vector) return std_logic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_logic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_X01; + + function to_X01 (b : bit) return X01 is + begin + return bit_to_x01 (b); + end to_X01; + + function to_X01Z (s : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_x01z (sa (i)); + end loop; + return res; + end to_X01Z; + + function to_X01Z (s : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_x01z (sa (i)); + end loop; + return res; + end to_X01Z; + + function to_X01Z (s : std_ulogic) return X01Z is + begin + return std_to_x01z (s); + end to_X01Z; + + function to_X01Z (b : bit_vector) return std_ulogic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_ulogic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_X01Z; + + function to_X01Z (b : bit_vector) return std_logic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_logic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_X01Z; + + function to_X01Z (b : bit) return X01Z is + begin + return bit_to_x01 (b); + end to_X01Z; + + function to_UX01 (s : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_ux01 (sa (i)); + end loop; + return res; + end to_UX01; + + function to_UX01 (s : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_ux01 (sa (i)); + end loop; + return res; + end to_UX01; + + function to_UX01 (s : std_ulogic) return UX01 is + begin + return std_to_ux01 (s); + end to_UX01; + + function to_UX01 (b : bit_vector) return std_ulogic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_ulogic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_UX01; + + function to_UX01 (b : bit_vector) return std_logic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_logic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_UX01; + + function to_UX01 (b : bit) return UX01 is + begin + return bit_to_x01 (b); + end to_UX01; + + function rising_edge (signal s : std_ulogic) return boolean is + begin + return s'event + and to_x01 (s'last_value) = '0' + and to_x01 (s) = '1'; + end rising_edge; + + function falling_edge (signal s : std_ulogic) return boolean is + begin + return s'event + and to_x01 (s'last_value) = '1' + and to_x01 (s) = '0'; + end falling_edge; + + type std_x_array is array (std_ulogic) of boolean; + constant std_x : std_x_array := ('U' | 'X' | 'Z' | 'W' | '-' => true, + '0' | '1' | 'L' | 'H' => false); + + + function is_X (s : std_ulogic_vector) return boolean is + begin + for i in s'range loop + if std_x (s (i)) then + return true; + end if; + end loop; + return false; + end is_X; + + function is_X (s : std_logic_vector) return boolean is + begin + for i in s'range loop + if std_x (s (i)) then + return true; + end if; + end loop; + return false; + end is_X; + + function is_X (s : std_ulogic) return boolean is + begin + return std_x (s); + end is_X; +end std_logic_1164; diff --git a/libraries/redist1164/std_logic_1164-body.v93 b/libraries/redist1164/std_logic_1164-body.v93 new file mode 100644 index 0000000..7e5c470 --- /dev/null +++ b/libraries/redist1164/std_logic_1164-body.v93 @@ -0,0 +1,769 @@ +-- This file was generated from std_logic_1164-body.proto +-- This is an implementation of -*- vhdl -*- ieee.std_logic_1164 based only +-- on the specifications. This file is part of GHDL. +-- Copyright (C) 2015 Tristan Gingold +-- +-- GHDL is free software; you can redistribute it and/or modify it under +-- the terms of the GNU General Public License as published by the Free +-- Software Foundation; either version 2, or (at your option) any later +-- version. +-- +-- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY +-- WARRANTY; without even the implied warranty of MERCHANTABILITY or +-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +-- for more details. +-- +-- You should have received a copy of the GNU General Public License +-- along with GCC; see the file COPYING3. If not see +-- <http://www.gnu.org/licenses/>. + +-- This is a template file. To avoid errors and duplication, the python +-- script build.py generate most of the bodies. + +package body std_logic_1164 is + + type table_1d is array (std_ulogic) of std_ulogic; + type table_2d is array (std_ulogic, std_ulogic) of std_ulogic; + + constant resolution : table_2d := + -- UX01ZWLH- + ("UUUUUUUUU", -- U + "UXXXXXXXX", -- X + "UX0X0000X", -- 0 + "UXX11111X", -- 1 + "UX01ZWLHX", -- Z + "UX01WWWWX", -- W + "UX01LWLWX", -- L + "UX01HWWHX", -- H + "UXXXXXXXX" -- - + ); + + function resolved (s : std_ulogic_vector) return std_ulogic + is + variable res : std_ulogic := 'Z'; + begin + for I in s'range loop + res := resolution (res, s (I)); + end loop; + return res; + end resolved; + + + constant and_table : table_2d := + -- UX01ZWLH- + ("UU0UUU0UU", -- U + "UX0XXX0XX", -- X + "000000000", -- 0 + "UX01XX01X", -- 1 + "UX0XXX0XX", -- Z + "UX0XXX0XX", -- W + "000000000", -- L + "UX01XX01X", -- H + "UX0XXX0XX" -- - + ); + + constant nand_table : table_2d := + -- UX01ZWLH- + ("UU1UUU1UU", -- U + "UX1XXX1XX", -- X + "111111111", -- 0 + "UX10XX10X", -- 1 + "UX1XXX1XX", -- Z + "UX1XXX1XX", -- W + "111111111", -- L + "UX10XX10X", -- H + "UX1XXX1XX" -- - + ); + + constant or_table : table_2d := + -- UX01ZWLH- + ("UUU1UUU1U", -- U + "UXX1XXX1X", -- X + "UX01XX01X", -- 0 + "111111111", -- 1 + "UXX1XXX1X", -- Z + "UXX1XXX1X", -- W + "UX01XX01X", -- L + "111111111", -- H + "UXX1XXX1X" -- - + ); + + constant nor_table : table_2d := + -- UX01ZWLH- + ("UUU0UUU0U", -- U + "UXX0XXX0X", -- X + "UX10XX10X", -- 0 + "000000000", -- 1 + "UXX0XXX0X", -- Z + "UXX0XXX0X", -- W + "UX10XX10X", -- L + "000000000", -- H + "UXX0XXX0X" -- - + ); + + constant xor_table : table_2d := + -- UX01ZWLH- + ("UUUUUUUUU", -- U + "UXXXXXXXX", -- X + "UX01XX01X", -- 0 + "UX10XX10X", -- 1 + "UXXXXXXXX", -- Z + "UXXXXXXXX", -- W + "UX01XX01X", -- L + "UX10XX10X", -- H + "UXXXXXXXX" -- - + ); + + constant xnor_table : table_2d := + -- UX01ZWLH- + ("UUUUUUUUU", -- U + "UXXXXXXXX", -- X + "UX10XX10X", -- 0 + "UX01XX01X", -- 1 + "UXXXXXXXX", -- Z + "UXXXXXXXX", -- W + "UX10XX10X", -- L + "UX01XX01X", -- H + "UXXXXXXXX" -- - + ); + + constant not_table : table_1d := + -- UX01ZWLH- + "UX10XX10X"; + + + function "and" (l, r : std_ulogic) return UX01 is + begin + return and_table (l, r); + end "and"; + + function "nand" (l, r : std_ulogic) return UX01 is + begin + return nand_table (l, r); + end "nand"; + + function "or" (l, r : std_ulogic) return UX01 is + begin + return or_table (l, r); + end "or"; + + function "nor" (l, r : std_ulogic) return UX01 is + begin + return nor_table (l, r); + end "nor"; + + function "xor" (l, r : std_ulogic) return UX01 is + begin + return xor_table (l, r); + end "xor"; + + function "xnor" (l, r : std_ulogic) return UX01 is + begin + return xnor_table (l, r); + end "xnor"; + + function "not" (l : std_ulogic) return UX01 is + begin + return not_table (l); + end "not"; + + function "and" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'and' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := and_table (la (I), ra (I)); + end loop; + end if; + return res; + end "and"; + + function "nand" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'nand' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := nand_table (la (I), ra (I)); + end loop; + end if; + return res; + end "nand"; + + function "or" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'or' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := or_table (la (I), ra (I)); + end loop; + end if; + return res; + end "or"; + + function "nor" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'nor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := nor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "nor"; + + function "xor" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'xor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := xor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "xor"; + + function "xnor" (l, r : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_ulogic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'xnor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := xnor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "xnor"; + + function "not" (l : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to l'length); + alias la : res_type is l; + variable res : res_type; + begin + for I in res_type'range loop + res (I) := not_table (la (I)); + end loop; + return res; + end "not"; + + function "and" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'and' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := and_table (la (I), ra (I)); + end loop; + end if; + return res; + end "and"; + + function "nand" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'nand' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := nand_table (la (I), ra (I)); + end loop; + end if; + return res; + end "nand"; + + function "or" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'or' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := or_table (la (I), ra (I)); + end loop; + end if; + return res; + end "or"; + + function "nor" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'nor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := nor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "nor"; + + function "xor" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'xor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := xor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "xor"; + + function "xnor" (l, r : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + alias ra : std_logic_vector (1 to r'length) is r; + variable res : res_type; + begin + if la'length /= ra'length then + assert false + report "arguments of overloaded 'xnor' operator are not of the same length" + severity failure; + else + for I in res_type'range loop + res (I) := xnor_table (la (I), ra (I)); + end loop; + end if; + return res; + end "xnor"; + + function "not" (l : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to l'length); + alias la : res_type is l; + variable res : res_type; + begin + for I in res_type'range loop + res (I) := not_table (la (I)); + end loop; + return res; + end "not"; + + -- Conversion functions. + -- The result range (for vectors) is S'Length - 1 downto 0. + -- XMAP is return for values not in '0', '1', 'L', 'H'. + function to_bit (s : std_ulogic; xmap : bit := '0') return bit is + begin + case s is + when '0' | 'L' => + return '0'; + when '1' | 'H' => + return '1'; + when others => + return xmap; + end case; + end to_bit; + + type bit_to_std_table is array (bit) of std_ulogic; + constant bit_to_std : bit_to_std_table := "01"; + + + function to_bitvector (s : std_ulogic_vector; xmap : bit := '0') + return bit_vector + is + subtype res_range is natural range s'length - 1 downto 0; + alias as : std_ulogic_vector (res_range) is s; + variable res : bit_vector (res_range); + variable b : bit; + begin + for I in res_range loop + -- Inline for efficiency. + case as (I) is + when '0' | 'L' => + b := '0'; + when '1' | 'H' => + b := '1'; + when others => + b := xmap; + end case; + res (I) := b; + end loop; + return res; + end to_bitvector; + + function to_bitvector (s : std_logic_vector; xmap : bit := '0') + return bit_vector + is + subtype res_range is natural range s'length - 1 downto 0; + alias as : std_logic_vector (res_range) is s; + variable res : bit_vector (res_range); + variable b : bit; + begin + for I in res_range loop + -- Inline for efficiency. + case as (I) is + when '0' | 'L' => + b := '0'; + when '1' | 'H' => + b := '1'; + when others => + b := xmap; + end case; + res (I) := b; + end loop; + return res; + end to_bitvector; + + function to_stdulogicvector (b : bit_vector) return std_ulogic_vector is + subtype res_range is natural range b'length - 1 downto 0; + alias ab : bit_vector (res_range) is b; + variable res : std_ulogic_vector (res_range); + begin + for I in res_range loop + res (I) := bit_to_std (ab (I)); + end loop; + return res; + end to_stdulogicvector; + + function to_stdlogicvector (b : bit_vector) return std_logic_vector is + subtype res_range is natural range b'length - 1 downto 0; + alias ab : bit_vector (res_range) is b; + variable res : std_logic_vector (res_range); + begin + for I in res_range loop + res (I) := bit_to_std (ab (I)); + end loop; + return res; + end to_stdlogicvector; + + function to_stdulogicvector (b : std_logic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (b'length - 1 downto 0); + begin + return res_type (b); + end to_stdulogicvector; + + function to_stdlogicvector (b : std_ulogic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (b'length - 1 downto 0); + begin + return res_type (b); + end to_stdlogicvector; + + function to_stdulogic (b : bit) return std_ulogic is + begin + return bit_to_std (b); + end to_stdulogic; + + -- Normalization. + type table_std_x01 is array (std_ulogic) of X01; + constant std_to_x01 : table_std_x01 := ('U' | 'X' | 'Z' | 'W' | '-' => 'X', + '0' | 'L' => '0', + '1' | 'H' => '1'); + + type table_bit_x01 is array (bit) of X01; + constant bit_to_x01 : table_bit_x01 := ('0' => '0', + '1' => '1'); + + + type table_std_x01z is array (std_ulogic) of X01Z; + constant std_to_x01z : table_std_x01 := ('U' | 'X' | 'W' | '-' => 'X', + '0' | 'L' => '0', + '1' | 'H' => '1', + 'Z' => 'Z'); + + type table_std_ux01 is array (std_ulogic) of UX01; + constant std_to_ux01 : table_std_ux01 := ('U' => 'U', + 'X' | 'Z' | 'W' | '-' => 'X', + '0' | 'L' => '0', + '1' | 'H' => '1'); + + + function to_X01 (s : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_x01 (sa (i)); + end loop; + return res; + end to_X01; + + function to_X01 (s : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_x01 (sa (i)); + end loop; + return res; + end to_X01; + + function to_X01 (s : std_ulogic) return X01 is + begin + return std_to_x01 (s); + end to_X01; + + function to_X01 (b : bit_vector) return std_ulogic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_ulogic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_X01; + + function to_X01 (b : bit_vector) return std_logic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_logic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_X01; + + function to_X01 (b : bit) return X01 is + begin + return bit_to_x01 (b); + end to_X01; + + function to_X01Z (s : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_x01z (sa (i)); + end loop; + return res; + end to_X01Z; + + function to_X01Z (s : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_x01z (sa (i)); + end loop; + return res; + end to_X01Z; + + function to_X01Z (s : std_ulogic) return X01Z is + begin + return std_to_x01z (s); + end to_X01Z; + + function to_X01Z (b : bit_vector) return std_ulogic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_ulogic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_X01Z; + + function to_X01Z (b : bit_vector) return std_logic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_logic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_X01Z; + + function to_X01Z (b : bit) return X01Z is + begin + return bit_to_x01 (b); + end to_X01Z; + + function to_UX01 (s : std_ulogic_vector) return std_ulogic_vector + is + subtype res_type is std_ulogic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_ux01 (sa (i)); + end loop; + return res; + end to_UX01; + + function to_UX01 (s : std_logic_vector) return std_logic_vector + is + subtype res_type is std_logic_vector (1 to s'length); + alias sa : res_type is s; + variable res : res_type; + begin + for i in res_type'range loop + res (i) := std_to_ux01 (sa (i)); + end loop; + return res; + end to_UX01; + + function to_UX01 (s : std_ulogic) return UX01 is + begin + return std_to_ux01 (s); + end to_UX01; + + function to_UX01 (b : bit_vector) return std_ulogic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_ulogic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_UX01; + + function to_UX01 (b : bit_vector) return std_logic_vector + is + subtype res_range is natural range 1 to b'length; + alias ba : bit_vector (res_range) is b; + variable res : std_logic_vector (res_range); + begin + for i in res_range loop + res (i) := bit_to_x01 (ba (i)); + end loop; + return res; + end to_UX01; + + function to_UX01 (b : bit) return UX01 is + begin + return bit_to_x01 (b); + end to_UX01; + + function rising_edge (signal s : std_ulogic) return boolean is + begin + return s'event + and to_x01 (s'last_value) = '0' + and to_x01 (s) = '1'; + end rising_edge; + + function falling_edge (signal s : std_ulogic) return boolean is + begin + return s'event + and to_x01 (s'last_value) = '1' + and to_x01 (s) = '0'; + end falling_edge; + + type std_x_array is array (std_ulogic) of boolean; + constant std_x : std_x_array := ('U' | 'X' | 'Z' | 'W' | '-' => true, + '0' | '1' | 'L' | 'H' => false); + + + function is_X (s : std_ulogic_vector) return boolean is + begin + for i in s'range loop + if std_x (s (i)) then + return true; + end if; + end loop; + return false; + end is_X; + + function is_X (s : std_logic_vector) return boolean is + begin + for i in s'range loop + if std_x (s (i)) then + return true; + end if; + end loop; + return false; + end is_X; + + function is_X (s : std_ulogic) return boolean is + begin + return std_x (s); + end is_X; +end std_logic_1164; diff --git a/libraries/redist1164/std_logic_1164.v87 b/libraries/redist1164/std_logic_1164.v87 new file mode 100644 index 0000000..964ed95 --- /dev/null +++ b/libraries/redist1164/std_logic_1164.v87 @@ -0,0 +1,143 @@ +-- This is an implementation of ieee.std_logic_1164 based only on the +-- specifications. This file is part of GHDL. +-- Copyright (C) 2015 Tristan Gingold +-- +-- GHDL is free software; you can redistribute it and/or modify it under +-- the terms of the GNU General Public License as published by the Free +-- Software Foundation; either version 2, or (at your option) any later +-- version. +-- +-- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY +-- WARRANTY; without even the implied warranty of MERCHANTABILITY or +-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +-- for more details. +-- +-- You should have received a copy of the GNU General Public License +-- along with GCC; see the file COPYING3. If not see +-- <http://www.gnu.org/licenses/>. + +-- This package is valid for VHDL version until but not including 2008. +-- For VHDL87, the functions xnor should be removed. + +package std_logic_1164 is + + -- Unresolved logic state. + type std_ulogic is + ('U', -- Uninitialized, this is also the default value. + 'X', -- Unknown / conflict value (forcing level). + '0', -- 0 (forcing level). + '1', -- 1 (forcing level). + 'Z', -- High impedance. + 'W', -- Unknown / conflict (weak level). + 'L', -- 0 (weak level). + 'H', -- 1 (weak level). + '-' -- Don't care. + ); + + -- Vector of logic state. + type std_ulogic_vector is array (natural range <>) of std_ulogic; + + -- Resolution function. + -- If S is empty, returns 'Z'. + -- If S has one element, return the element. + -- Otherwise, 'U' is the strongest. + -- then 'X' + -- then '0' and '1' + -- then 'W' + -- then 'H' and 'L' + -- then 'Z'. + function resolved (s : std_ulogic_vector) return std_ulogic; + + -- Resolved logic state. + subtype std_logic is resolved std_ulogic; + + -- Vector of std_logic. + type std_logic_vector is array (natural range <>) of std_logic; + + -- Subtypes of std_ulogic. The names give the values. + subtype X01 is resolved std_ulogic range 'X' to '1'; + subtype X01Z is resolved std_ulogic range 'X' to 'Z'; + subtype UX01 is resolved std_ulogic range 'U' to '1'; + subtype UX01Z is resolved std_ulogic range 'U' to 'Z'; + + -- Logical operators. + -- For logical operations, the inputs are first normalized to UX01: + -- 0 and L are normalized to 0, 1 and 1 are normalized to 1, U isnt changed, + -- all other states are normalized to X. + -- Then the classical electric rules are followed. + function "and" (l, r : std_ulogic) return UX01; + function "nand" (l, r : std_ulogic) return UX01; + function "or" (l, r : std_ulogic) return UX01; + function "nor" (l, r : std_ulogic) return UX01; + function "xor" (l, r : std_ulogic) return UX01; +--function "xnor" (l, r : std_ulogic) return UX01; + function "not" (l : std_ulogic) return UX01; + + -- Logical operators for vectors. + -- An assertion of severity failure fails if the length of L and R aren't + -- equal. The result range is 1 to L'Length. + function "and" (l, r : std_logic_vector) return std_logic_vector; + function "nand" (l, r : std_logic_vector) return std_logic_vector; + function "or" (l, r : std_logic_vector) return std_logic_vector; + function "nor" (l, r : std_logic_vector) return std_logic_vector; + function "xor" (l, r : std_logic_vector) return std_logic_vector; +--function "xnor" (l, r : std_logic_vector) return std_logic_vector; + function "not" (l : std_logic_vector) return std_logic_vector; + + function "and" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "nand" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "or" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "nor" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "xor" (l, r : std_ulogic_vector) return std_ulogic_vector; +--function "xnor" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "not" (l : std_ulogic_vector) return std_ulogic_vector; + + -- Conversion functions. + -- The result range (for vectors) is S'Length - 1 downto 0. + -- XMAP is return for values not in '0', '1', 'L', 'H'. + function to_bit (s : std_ulogic; xmap : bit := '0') return bit; + function to_bitvector (s : std_logic_vector; xmap : bit := '0') + return bit_vector; + function to_bitvector (s : std_ulogic_vector; xmap : bit := '0') + return bit_vector; + + function to_stdulogic (b : bit) return std_ulogic; + function to_stdlogicvector (b : bit_vector) return std_logic_vector; + function to_stdlogicvector (b : std_ulogic_vector) return std_logic_vector; + function to_stdulogicvector (b : bit_vector) return std_ulogic_vector; + function to_stdulogicvector (b : std_logic_vector) return std_ulogic_vector; + + -- Normalization. + -- The result range (for vectors) is 1 to S'Length. + function to_X01 (s : std_logic_vector) return std_logic_vector; + function to_X01 (s : std_ulogic_vector) return std_ulogic_vector; + function to_X01 (s : std_ulogic) return X01; + function to_X01 (b : bit_vector) return std_logic_vector; + function to_X01 (b : bit_vector) return std_ulogic_vector; + function to_X01 (b : bit) return X01; + + function to_X01Z (s : std_logic_vector) return std_logic_vector; + function to_X01Z (s : std_ulogic_vector) return std_ulogic_vector; + function to_X01Z (s : std_ulogic) return X01Z; + function to_X01Z (b : bit_vector) return std_logic_vector; + function to_X01Z (b : bit_vector) return std_ulogic_vector; + function to_X01Z (b : bit) return X01Z; + + function to_UX01 (s : std_logic_vector) return std_logic_vector; + function to_UX01 (s : std_ulogic_vector) return std_ulogic_vector; + function to_UX01 (s : std_ulogic) return UX01; + function to_UX01 (b : bit_vector) return std_logic_vector; + function to_UX01 (b : bit_vector) return std_ulogic_vector; + function to_UX01 (b : bit) return UX01; + + -- Edge detection. + -- An edge is detected in case of event on s, and X01 normalized value + -- rises from 0 to 1 or falls from 1 to 0. + function rising_edge (signal s : std_ulogic) return boolean; + function falling_edge (signal s : std_ulogic) return boolean; + + -- Test for unknown. Only 0, 1, L and H are known values. + function is_X (s : std_ulogic_vector) return boolean; + function is_X (s : std_logic_vector) return boolean; + function is_X (s : std_ulogic) return boolean; +end std_logic_1164; diff --git a/libraries/redist1164/std_logic_1164.v93 b/libraries/redist1164/std_logic_1164.v93 new file mode 100644 index 0000000..0ee62a1 --- /dev/null +++ b/libraries/redist1164/std_logic_1164.v93 @@ -0,0 +1,143 @@ +-- This is an implementation of ieee.std_logic_1164 based only on the +-- specifications. This file is part of GHDL. +-- Copyright (C) 2015 Tristan Gingold +-- +-- GHDL is free software; you can redistribute it and/or modify it under +-- the terms of the GNU General Public License as published by the Free +-- Software Foundation; either version 2, or (at your option) any later +-- version. +-- +-- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY +-- WARRANTY; without even the implied warranty of MERCHANTABILITY or +-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +-- for more details. +-- +-- You should have received a copy of the GNU General Public License +-- along with GCC; see the file COPYING3. If not see +-- <http://www.gnu.org/licenses/>. + +-- This package is valid for VHDL version until but not including 2008. +-- For VHDL87, the functions xnor should be removed. + +package std_logic_1164 is + + -- Unresolved logic state. + type std_ulogic is + ('U', -- Uninitialized, this is also the default value. + 'X', -- Unknown / conflict value (forcing level). + '0', -- 0 (forcing level). + '1', -- 1 (forcing level). + 'Z', -- High impedance. + 'W', -- Unknown / conflict (weak level). + 'L', -- 0 (weak level). + 'H', -- 1 (weak level). + '-' -- Don't care. + ); + + -- Vector of logic state. + type std_ulogic_vector is array (natural range <>) of std_ulogic; + + -- Resolution function. + -- If S is empty, returns 'Z'. + -- If S has one element, return the element. + -- Otherwise, 'U' is the strongest. + -- then 'X' + -- then '0' and '1' + -- then 'W' + -- then 'H' and 'L' + -- then 'Z'. + function resolved (s : std_ulogic_vector) return std_ulogic; + + -- Resolved logic state. + subtype std_logic is resolved std_ulogic; + + -- Vector of std_logic. + type std_logic_vector is array (natural range <>) of std_logic; + + -- Subtypes of std_ulogic. The names give the values. + subtype X01 is resolved std_ulogic range 'X' to '1'; + subtype X01Z is resolved std_ulogic range 'X' to 'Z'; + subtype UX01 is resolved std_ulogic range 'U' to '1'; + subtype UX01Z is resolved std_ulogic range 'U' to 'Z'; + + -- Logical operators. + -- For logical operations, the inputs are first normalized to UX01: + -- 0 and L are normalized to 0, 1 and 1 are normalized to 1, U isnt changed, + -- all other states are normalized to X. + -- Then the classical electric rules are followed. + function "and" (l, r : std_ulogic) return UX01; + function "nand" (l, r : std_ulogic) return UX01; + function "or" (l, r : std_ulogic) return UX01; + function "nor" (l, r : std_ulogic) return UX01; + function "xor" (l, r : std_ulogic) return UX01; + function "xnor" (l, r : std_ulogic) return UX01; + function "not" (l : std_ulogic) return UX01; + + -- Logical operators for vectors. + -- An assertion of severity failure fails if the length of L and R aren't + -- equal. The result range is 1 to L'Length. + function "and" (l, r : std_logic_vector) return std_logic_vector; + function "nand" (l, r : std_logic_vector) return std_logic_vector; + function "or" (l, r : std_logic_vector) return std_logic_vector; + function "nor" (l, r : std_logic_vector) return std_logic_vector; + function "xor" (l, r : std_logic_vector) return std_logic_vector; + function "xnor" (l, r : std_logic_vector) return std_logic_vector; + function "not" (l : std_logic_vector) return std_logic_vector; + + function "and" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "nand" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "or" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "nor" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "xor" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "xnor" (l, r : std_ulogic_vector) return std_ulogic_vector; + function "not" (l : std_ulogic_vector) return std_ulogic_vector; + + -- Conversion functions. + -- The result range (for vectors) is S'Length - 1 downto 0. + -- XMAP is return for values not in '0', '1', 'L', 'H'. + function to_bit (s : std_ulogic; xmap : bit := '0') return bit; + function to_bitvector (s : std_logic_vector; xmap : bit := '0') + return bit_vector; + function to_bitvector (s : std_ulogic_vector; xmap : bit := '0') + return bit_vector; + + function to_stdulogic (b : bit) return std_ulogic; + function to_stdlogicvector (b : bit_vector) return std_logic_vector; + function to_stdlogicvector (b : std_ulogic_vector) return std_logic_vector; + function to_stdulogicvector (b : bit_vector) return std_ulogic_vector; + function to_stdulogicvector (b : std_logic_vector) return std_ulogic_vector; + + -- Normalization. + -- The result range (for vectors) is 1 to S'Length. + function to_X01 (s : std_logic_vector) return std_logic_vector; + function to_X01 (s : std_ulogic_vector) return std_ulogic_vector; + function to_X01 (s : std_ulogic) return X01; + function to_X01 (b : bit_vector) return std_logic_vector; + function to_X01 (b : bit_vector) return std_ulogic_vector; + function to_X01 (b : bit) return X01; + + function to_X01Z (s : std_logic_vector) return std_logic_vector; + function to_X01Z (s : std_ulogic_vector) return std_ulogic_vector; + function to_X01Z (s : std_ulogic) return X01Z; + function to_X01Z (b : bit_vector) return std_logic_vector; + function to_X01Z (b : bit_vector) return std_ulogic_vector; + function to_X01Z (b : bit) return X01Z; + + function to_UX01 (s : std_logic_vector) return std_logic_vector; + function to_UX01 (s : std_ulogic_vector) return std_ulogic_vector; + function to_UX01 (s : std_ulogic) return UX01; + function to_UX01 (b : bit_vector) return std_logic_vector; + function to_UX01 (b : bit_vector) return std_ulogic_vector; + function to_UX01 (b : bit) return UX01; + + -- Edge detection. + -- An edge is detected in case of event on s, and X01 normalized value + -- rises from 0 to 1 or falls from 1 to 0. + function rising_edge (signal s : std_ulogic) return boolean; + function falling_edge (signal s : std_ulogic) return boolean; + + -- Test for unknown. Only 0, 1, L and H are known values. + function is_X (s : std_ulogic_vector) return boolean; + function is_X (s : std_logic_vector) return boolean; + function is_X (s : std_ulogic) return boolean; +end std_logic_1164; |