1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
#include <string>
#include "wchar.h"
#include <cstdlib>
extern "C"
{
#include<Scierror.h>
#include<sciprint.h>
#include<api_scilab.h>
#include "localization.h"
#include "fun.h"
#include <cstdio>
#include <math.h>
#include <stdio.h>
#include "os_string.h"
#include <stdlib.h>
static const char fname[] = "octave_fun";
int sci_octave_fun(scilabEnv env, int nin, scilabVar* in, int nopt, scilabOpt* opt, int nout, scilabVar* out)
{
//printf("nin: %d\n", nin);
if (nin < 2)
{
Scierror(999, _("%s: Wrong number of input arguments. Atleast %d expected.\n"), fname, 2);
return STATUS_ERROR;
}
FUNCCALL funcall;
FUNCCALL *funptr = &funcall;
funcall.n_in_arguments = nin;
funcall.n_out_user = nout;
FUNCARGS ins[funcall.n_in_arguments*nout];
FUNCARGS *argptr = ins;
int i,j;
double* d;
double* rd = NULL;;
double* cd = NULL;;
int size;
char str[20];
char* c;
double* n = NULL;
int row = 0;
int col = 0;
double* in_real;
double* in_img;
for(i=0;i<nin;i++)
{
if(scilab_getType(env, in[i])==1)
{
ins[i].type = TYPE_DOUBLE;
if(scilab_isComplex(env, in[i])==1)
{
//printf("input %d is complex \n", i);
ins[i].is_in_cmplx=1;
size = scilab_getDim2d(env, in[i], &row, &col);
ins[i].n_in_rows = row;
ins[i].n_in_cols = col;
scilab_getDoubleComplexArray(env, in[i],&in_real, &in_img);
ins[i].in_data_real = malloc(sizeof(double)*size);
ins[i].in_data_img = malloc(sizeof(double)*size);
rd = (double *)ins[i].in_data_real;
cd = (double *)ins[i].in_data_img;
////This code snippet is to flatten matrix row wise and then store it
int p,q,k = 0;
for(p=0;p<row;p++)
{
for(q=0;q<col;q++)
{
rd[k] = in_real[p + q*row];
cd[k] = in_img[p + q*row];
k++;
//printf("%d\n",in_real[k]);
//printf("%d\n",in_img[k]);
}
}
}
else
{
//printf("input %d is NOT complex \n", i);
ins[i].is_in_cmplx=0;
size = scilab_getDim2d(env, in[i], &row, &col);
ins[i].n_in_rows = row;
ins[i].n_in_cols = col;
scilab_getDoubleArray(env, in[i], &n);
ins[i].in_data_real = malloc(sizeof(double)*size);
d = (double *)ins[i].in_data_real;
////This code snippet is to flatten matrix row wise and then store it
int p,q,k = 0;
for(p=0;p<row;p++)
{
for(q=0;q<col;q++)
{
d[k] = n[p + q*row];
k++;
//printf("%f\n",d[j]);
}
}
}
/////////////////////////////////////////
}
else if(scilab_getType(env, in[i])==10)
{
ins[i].is_in_cmplx=0;
wchar_t* in1 = 0;
scilab_getString(env, in[i], &in1);
//printf("%S\n", in1);
wcstombs(str, in1, sizeof(str));
//printf("%s\n", str);
if(str)
{
//printf("lenght of string input: %d\n", strlen(str));
ins[i].type = TYPE_STRING;
ins[i].n_in_rows = 1;
ins[i].n_in_cols = strlen(str);
size = (ins[i].n_in_rows)*(ins[i].n_in_cols);
ins[i].in_data_real = malloc(sizeof(char)*size+1);
c = (char *)ins[i].in_data_real;
int ci;
strcpy(c,str);
ins[i].n_in_cols = strlen(c);
//printf("in scilab strin is: %s\n", c);
}
}
}
int status_fun = fun(argptr, funptr);
//printf("in scilab status_fun is: %d\n", status_fun);
//printf("in scilab funcall.n_out_arguments is: %d\n", funcall.n_out_arguments);
//printf("in scilab funcall.n_out_user is: %d\n", funcall.n_out_user);
//printf("in scilab ins[0].n_out_rows is: %d\n", ins[0].n_out_rows);
//printf("in scilab ins[0].n_out_cols is: %d\n", ins[0].n_out_cols);
//printf("in scilab ouput args are: %d\n", funcall.n_out_arguments);
if(status_fun==1)
{
Scierror(999, "\nOctave unable to process!\nCorrect usage:\n octave_fun(\"octave_function\",input1,input2,...)\n octave_fun(\"octave_function\",input1,input2,...,optional_input1,optional_input2,...)\n octave_fun(\"octave_function\",\"octave_package\",input1,input2,...)\n octave_fun(\"octave_function\",\"octave_package\",input1,input2,...,optional_input1,optional_input2,...)\n");
return 1;
}
else if(funcall.n_out_user <= funcall.n_out_arguments)
{
for(i=0;i<nout;i++)
{
if(ins[i].is_out_cmplx==1)
{
//printf("output %d is complex\n", i);
out[i] = scilab_createDoubleMatrix2d(env, ins[i].n_out_rows, ins[i].n_out_cols, 1);
double* out_real = NULL;
double* out_img = NULL;
scilab_getDoubleComplexArray(env, out[i],&out_real, &out_img);
int len = ins[i].n_out_rows*ins[i].n_out_cols;
double* ord = (double *)ins[i].out_data_real;
double* ocd = (double *)ins[i].out_data_img;
//printf("output length is: %d\n", len);
for(j=0; j<len; j++)
{
out_real[j] = ord[j];
}
for(j=0; j<len; j++)
{
out_img[j] = ocd[j];
}
}
else
{
//printf("output %d is NOT complex\n", i);
out[i] = scilab_createDoubleMatrix2d(env, ins[i].n_out_rows, ins[i].n_out_cols, 0);
double* out1 = NULL;
scilab_getDoubleArray(env, out[i], &out1);
int len = ins[i].n_out_rows*ins[i].n_out_cols;
double* dd = (double *)ins[i].out_data_real;
//printf("output length is: %d\n", len);
for(j=0; j<len; j++)
{
out1[j] = dd[j];//.float_value();
}
}
}
}
else
{
Scierror(77, _("%s: Wrong number of output arguments: This function can return a maximum of %d output(s).\n"), fname, funcall.n_out_arguments);
return 1;
}
for(i=0;i<nout;i++)
{
free(ins[i].out_data_real);
if(ins[i].is_out_cmplx==1)
free(ins[i].out_data_img);
}
for(i=0;i<nin;i++)
{
free(ins[i].in_data_real);
if(ins[i].is_in_cmplx==1)
free(ins[i].in_data_img);
}
return 0;
}
}
|