1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html >
<head><title></title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="generator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
<meta name="originator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
<!-- html -->
<meta name="src" content="eSim.tex">
<meta name="date" content="2015-07-31 15:26:00">
<link rel="stylesheet" type="text/css" href="eSim.css">
</head><body
>
<!--l. 62--><p class="indent" >
<div class="center"
>
<!--l. 1--><p class="noindent" >
<!--l. 2--><p class="noindent" ><span
class="cmbx-12x-x-207">eSim</span><br /><br />
<span
class="cmbx-12x-x-144">An open source EDA tool for circuit design,</span>
<span
class="cmbx-12x-x-144">simulation, analysis and PCB design</span><br />
<img
src="figures/logo-trimmed.png" alt="PIC"
>
<img
src="figures/iitblogo.png" alt="PIC"
><br />
Indian Institute of Technology Bombay<br />
August 2015</div>
<div class="center"
>
<!--l. 22--><p class="noindent" >
<!--l. 23--><p class="noindent" >To<br />
<span
class="cmr-12">Mr. Narendra Kumar Sinha, IAS</span><br />
<span
class="cmr-12">An Electronics Engineer and a Bureaucrat,</span><br />
<span
class="cmr-12">Who dreamt of educating all Indians through NMEICT and</span><br />
<span
class="cmr-12">Who envisioned and made possible the Aakash Tablet </span></div>
<!--l. 31--><p class="noindent" >
<!--l. 66--><p class="indent" >
<h2 class="likechapterHead"><a
id="x1-1000"></a>Contents</h2> <div class="tableofcontents">
<span class="chapterToc" > <a
href="#Q1-1-3">Preface </a></span>
<br /> <span class="chapterToc" > <a
href="#Q1-1-5">Acknowledgements </a></span>
<br /> <span class="chapterToc" > <a
href="#Q1-1-7">List of Acronyms </a></span>
<br /> <span class="chapterToc" >1 <a
href="#x1-50001" id="QQ2-1-8">Introduction</a></span>
<br /> <span class="chapterToc" >2 <a
href="#x1-60002" id="QQ2-1-9">Installing and Setting up eSim</a></span>
<br /> <span class="chapterToc" >3 <a
href="#x1-70003" id="QQ2-1-10">Architecture of eSim</a></span>
<br />  <span class="sectionToc" >3.1 <a
href="#x1-80003.1" id="QQ2-1-11">Modules used in eSim</a></span>
<br />   <span class="subsectionToc" >3.1.1 <a
href="#x1-90003.1.1" id="QQ2-1-12">EEschema</a></span>
<br />   <span class="subsectionToc" >3.1.2 <a
href="#x1-100003.1.2" id="QQ2-1-13">CvPcb</a></span>
<br />   <span class="subsectionToc" >3.1.3 <a
href="#x1-110003.1.3" id="QQ2-1-14">Pcbnew</a></span>
<br />   <span class="subsectionToc" >3.1.4 <a
href="#x1-120003.1.4" id="QQ2-1-15">KiCad to Ngspice converter</a></span>
<br />   <span class="subsectionToc" >3.1.5 <a
href="#x1-180003.1.5" id="QQ2-1-21">Model Builder</a></span>
<br />   <span class="subsectionToc" >3.1.6 <a
href="#x1-190003.1.6" id="QQ2-1-22">Subcircuit Builder</a></span>
<br />   <span class="subsectionToc" >3.1.7 <a
href="#x1-200003.1.7" id="QQ2-1-23">KiCad to Ngspice netlist converter</a></span>
<br />   <span class="subsectionToc" >3.1.8 <a
href="#x1-210003.1.8" id="QQ2-1-24">Ngspice</a></span>
<br />  <span class="sectionToc" >3.2 <a
href="#x1-220003.2" id="QQ2-1-25">Work flow of eSim</a></span>
<br /> <span class="chapterToc" >4 <a
href="#x1-230004" id="QQ2-1-27">Getting Started</a></span>
<br />  <span class="sectionToc" >4.1 <a
href="#x1-240004.1" id="QQ2-1-28">eSim Main Window</a></span>
<br />   <span class="subsectionToc" >4.1.1 <a
href="#x1-250004.1.1" id="QQ2-1-29">Workspace</a></span>
<br />   <span class="subsectionToc" >4.1.2 <a
href="#x1-260004.1.2" id="QQ2-1-31">Main-GUI</a></span>
<br /> <span class="chapterToc" >5 <a
href="#x1-320005" id="QQ2-1-48">Schematic Creation</a></span>
<br />  <span class="sectionToc" >5.1 <a
href="#x1-330005.1" id="QQ2-1-49">Familiarising the Schematic Editor interface</a></span>
<br />   <span class="subsectionToc" >5.1.1 <a
href="#x1-340005.1.1" id="QQ2-1-51">Top menu bar</a></span>
<br />   <span class="subsectionToc" >5.1.2 <a
href="#x1-350005.1.2" id="QQ2-1-53">Top toolbar</a></span>
<br />   <span class="subsectionToc" >5.1.3 <a
href="#x1-360005.1.3" id="QQ2-1-55">Toolbar on the right</a></span>
<br />   <span class="subsectionToc" >5.1.4 <a
href="#x1-370005.1.4" id="QQ2-1-57">Toolbar on the left</a></span>
<br />   <span class="subsectionToc" >5.1.5 <a
href="#x1-380005.1.5" id="QQ2-1-59">Hotkeys</a></span>
<br />  <span class="sectionToc" >5.2 <a
href="#x1-390005.2" id="QQ2-1-60">Schematic creation for simulation</a></span>
<br />   <span class="subsectionToc" >5.2.1 <a
href="#x1-400005.2.1" id="QQ2-1-62">Selection and placement of components</a></span>
<br />   <span class="subsectionToc" >5.2.2 <a
href="#x1-410005.2.2" id="QQ2-1-66">Wiring the circuit</a></span>
<br />   <span class="subsectionToc" >5.2.3 <a
href="#x1-420005.2.3" id="QQ2-1-68">Assigning values to components</a></span>
<br />   <span class="subsectionToc" >5.2.4 <a
href="#x1-430005.2.4" id="QQ2-1-70">Annotation and ERC</a></span>
<br />   <span class="subsectionToc" >5.2.5 <a
href="#x1-440005.2.5" id="QQ2-1-74">Netlist generation</a></span>
<br /> <span class="chapterToc" >6 <a
href="#x1-450006" id="QQ2-1-76">Simulation</a></span>
<br />  <span class="sectionToc" >6.1 <a
href="#x1-460006.1" id="QQ2-1-77">Analysis Inserter</a></span>
<br />   <span class="subsectionToc" >6.1.1 <a
href="#x1-470006.1.1" id="QQ2-1-79">Types of analysis</a></span>
<br />   <span class="subsectionToc" >6.1.2 <a
href="#x1-510006.1.2" id="QQ2-1-83">DC analysis inserter</a></span>
<br />   <span class="subsectionToc" >6.1.3 <a
href="#x1-520006.1.3" id="QQ2-1-85">AC analysis inserter</a></span>
<br />   <span class="subsectionToc" >6.1.4 <a
href="#x1-530006.1.4" id="QQ2-1-87">Transient analysis inserter</a></span>
<br />  <span class="sectionToc" >6.2 <a
href="#x1-540006.2" id="QQ2-1-89">Adding Source Details</a></span>
<br />  <span class="sectionToc" >6.3 <a
href="#x1-550006.3" id="QQ2-1-92">Adding Ngspice Model</a></span>
<br />  <span class="sectionToc" >6.4 <a
href="#x1-560006.4" id="QQ2-1-93">Adding Device Model Library</a></span>
<br />  <span class="sectionToc" >6.5 <a
href="#x1-570006.5" id="QQ2-1-96">Adding Sub Circuit</a></span>
<br />  <span class="sectionToc" >6.6 <a
href="#x1-580006.6" id="QQ2-1-97">Kicad to Ngspice Conversion</a></span>
<br />  <span class="sectionToc" >6.7 <a
href="#x1-590006.7" id="QQ2-1-99">Simulation</a></span>
<br /> <span class="chapterToc" >7 <a
href="#x1-600007" id="QQ2-1-104">PCB Design</a></span>
<br />  <span class="sectionToc" >7.1 <a
href="#x1-610007.1" id="QQ2-1-105">Schematic creation for PCB design</a></span>
<br />   <span class="subsectionToc" >7.1.1 <a
href="#x1-620007.1.1" id="QQ2-1-107">Netlist generation for PCB</a></span>
<br />   <span class="subsectionToc" >7.1.2 <a
href="#x1-630007.1.2" id="QQ2-1-109">Mapping of components using Footprint Editor</a></span>
<br />   <span class="subsectionToc" >7.1.3 <a
href="#x1-640007.1.3" id="QQ2-1-110">Familiarising the Footprint Editor tool</a></span>
<br />   <span class="subsectionToc" >7.1.4 <a
href="#x1-660007.1.4" id="QQ2-1-114">Viewing footprints in 2D and 3D</a></span>
<br />   <span class="subsectionToc" >7.1.5 <a
href="#x1-670007.1.5" id="QQ2-1-118">Mapping of components in the RC circuit</a></span>
<br />  <span class="sectionToc" >7.2 <a
href="#x1-680007.2" id="QQ2-1-120">Creation of PCB layout</a></span>
<br />   <span class="subsectionToc" >7.2.1 <a
href="#x1-690007.2.1" id="QQ2-1-121">Familiarising the Layout Editor tool</a></span>
<br />   <span class="subsectionToc" >7.2.2 <a
href="#x1-710007.2.2" id="QQ2-1-125">Hotkeys</a></span>
<br />   <span class="subsectionToc" >7.2.3 <a
href="#x1-720007.2.3" id="QQ2-1-126">PCB design example using RC circuit</a></span>
<br /> <span class="chapterToc" >8 <a
href="#x1-730008" id="QQ2-1-141">Model Editor</a></span>
<br />  <span class="sectionToc" >8.1 <a
href="#x1-740008.1" id="QQ2-1-143">Creating New Model Library </a></span>
<br />  <span class="sectionToc" >8.2 <a
href="#x1-750008.2" id="QQ2-1-148">Editing Current Model Library</a></span>
<br />  <span class="sectionToc" >8.3 <a
href="#x1-760008.3" id="QQ2-1-150">Converting Library file to XML file</a></span>
<br /> <span class="chapterToc" >9 <a
href="#x1-770009" id="QQ2-1-151">Sub-Circuit Builder</a></span>
<br />  <span class="sectionToc" >9.1 <a
href="#x1-780009.1" id="QQ2-1-153">Creating a Sub-Circuit</a></span>
<br /> <span class="appendixToc" >A <a
href="#x1-79000A" id="QQ2-1-156">Solved Examples</a></span>
<br />  <span class="sectionToc" >A.1 <a
href="#x1-80000A.1" id="QQ2-1-157">Solved Examples</a></span>
<br />   <span class="subsectionToc" >A.1.1 <a
href="#x1-81000A.1.1" id="QQ2-1-158">Basic RC Circuit</a></span>
<br />   <span class="subsectionToc" >A.1.2 <a
href="#x1-84000A.1.2" id="QQ2-1-167">Half Wave Rectifier</a></span>
<br />   <span class="subsectionToc" >A.1.3 <a
href="#x1-87000A.1.3" id="QQ2-1-177">Inverting Amplifier</a></span>
<br />   <span class="subsectionToc" >A.1.4 <a
href="#x1-90000A.1.4" id="QQ2-1-187">Precision Rectifier</a></span>
<br />   <span class="subsectionToc" >A.1.5 <a
href="#x1-93000A.1.5" id="QQ2-1-198">Half Adder Example</a></span>
</div>
<h2 class="likechapterHead"><a
id="x1-2000"></a>Preface</h2> <a
id="Q1-1-3"></a>
<!--l. 5--><p class="noindent" >eSim was formerlly known as freeEDA/Oscad. Seeds for eSim were sown when the National
Mission on Education through ICT (NMEICT) was launched: the mission document identified
<span
class="cmti-10x-x-109">Adaption & deployment of open source simulation packages equivalent to Matlab,</span>
<span
class="cmti-10x-x-109">OrCAD, etc.</span>, as one of the areas NMEICT would concentrate on. The FOSSEE
(free and open source software in science and engineering education) group at IIT
Bombay, of which we are a part of, initially started working on Python and Scilab. The
Standing Committee of NMEICT encouraged us to contribute to other open source
software as well. This push helped us develop eSim, an open source alternative to
OrCAD.
<!--l. 18--><p class="indent" > eSim is an electronic design automation (EDA) tool, developed using KiCad and Ngspice.
We have made the netlist files generated by KiCad suitable for simulation through
Ngspice. In order to provide an explanation facility, we have developed a method to
automatically generate differential equations that describe a given analog circuit.
Once satisfied with simulation results, the user can create a Gerber file for PCB
fabrication.
<!--l. 24--><p class="indent" > The FOSSEE team has also created more than 160 Scilab Textbook Companions,
each of which contains Scilab code for worked out examples of standard textbooks,
mostly in engineering and science. These have been created by the students and
professors from various educational institutions in India. These textbooks can be
downloaded free of cost from <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>. They can also be executed remotely on GARUDA cloud
<span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>.
<!--l. 32--><p class="indent" > We are embarking on a similar methodology for eSim as well: we have solved most of the
worked out examples of <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span> and given the solution in Appendix <a
href="#x1-79000A">A<!--tex4ht:ref: ch:appen --></a>. We hope to create eSim
Textbook Companions for all other relevant standard textbooks as well in the near future,
once again through students and other volunteers.
<!--l. 38--><p class="indent" > Solving the worked out examples of <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span> was a good exercise, as it helped identify and
include some missing features. The yet to be created eSim Textbook Companions
are expected to help in this regard, while simultaneously increasing the available
documentation.
<!--l. 44--><p class="indent" > Lab migration is another important activity that the FOSSEE team is involved in. It
provides equivalent Scilab code for Matlab based labs. This is also carried out through
students and volunteers. We are starting this activity for eSim as well: we will try to provide
equivalent eSim based solution to all circuit design labs that currently use proprietary
software.
<!--l. 51--><p class="indent" > Another important project supported by NMEICT is the Teach 10,000 Teachers (T10KT)
programme. This methodology, pioneered at IIT Bombay <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>, <span
class="cmbx-10x-x-109">?</span>]</span> has demonstrated that it is
possible for the best people in the field to provide extremely high quality training
to a large number of learners simultaneously. eSim is expected to be used in the
forthcoming T10KT course on Analog Electronics, organised by IIT Kharagpur
<span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>.
<!--l. 60--><p class="indent" > We invite all EDA enthusiasts to work with us through the following resources:
<a
id="x1-2001r1"></a>1. URL for all FOSSEE activities: http://fossee.in <a
id="x1-2002r2"></a>2. URL for all eSim resources:
http://oscad.in <a
id="x1-2003r3"></a>3. Textbook companion: textbook-companion@oscad.in <a
id="x1-2004r4"></a>4. Lab migration:
lab-migration@oscad.in <a
id="x1-2005r5"></a>5. SELF workshops: SELF-workshop@oscad.in <a
id="x1-2006r6"></a>6. eSim
development and enhancing its capabilities: Oscad-dev@oscad.in <a
id="x1-2007r7"></a>7. Feedback on this book:
Oscad-textbook@oscad.in.
We also hope to establish forum based discussion services for eSim.
<!--l. 75--><p class="indent" > Finally, an electronic version of this book is available for noncommercial purposes at
http://oscad.in.
<h3 class="likesectionHead"><a
id="x1-3000"></a>Acknowledgements</h3>
<a
id="Q1-1-5"></a>
<!--l. 81--><p class="noindent" >We would first like to thank Mr. N. K. Sinha, IAS, for without him, there would
have been no National Mission on Education through ICT (NMEICT), without
which, there would have been no FOSSEE, without which, there would have been
no eSim. The idealistic guiding principles of NMEICT, namely, reliance on open
source software, providing free access to e-content and Internet connectivity for all
educational institutions, egged us to contribute our best and one of the outcomes is
eSim.
<!--l. 90--><p class="indent" > We would like to thank the former Human Resource Development Minister (HRM) Mr.
Arjun Singh for getting NMEICT started. We would like to acknowledge the former HRM Mr.
Kapil Sibal for his unstinting support and the faith he had in the NMEICT administration
team. We would like to thank the current HRM Dr. Pallam Raju for extending the tenure of
NMEICT by five more years.
<!--l. 97--><p class="indent" > We want to thank the Members of the Standing Committee of NMEICT who met once in
two weeks for almost two years to review project proposals and to recommend them for
funding or giving suggestions for improvement. We also want to thank them for urging us to
work on more FOSS systems than what we were prepared for. Without this kind of active
support, the ecosystem required for projects like eSim to flourish, established at IIT
Bombay through the many projects funded through NMEICT, would not have
materialised.
<!--l. 106--><p class="indent" > We want to thank the FOSSEE faculty members Profs. Prabhu Ramachandran, Madhu
Belur, Mani Bhushan, Shiva Gopalakrishnan, Jayendran Venkateswaran, Ashutosh
Mahajan and Supratik Chakraborty for establishing a vibrant FOSSEE group at
IIT Bombay. We want to thank Prof. D. B. Phatak for being a constant source
of inspiration and encouragement and for supporting our activities. We want to
thank other faculty members with NMEICT projects at IIT Bombay, namely, Profs.
Kavi Arya, Ravi Poovaiah, Santosh Noronha, Anil Kulkarni, Sridhar Iyer, Sahana
Murthy and Shishir Jha for sharing their dreams, processes and facilities. We want to
thank the staff members of all NMEICT projects at IIT Bombay in general and of
FOSSEE and Spoken Tutorial projects in particular, for providing a wonderful work
environment.
<!--l. 119--><p class="indent" > We want to thank the IIT Bombay administration in general and R&D office in particular
for providing us with an excellent environment to make us work efficiently. We want to thank
the researchers and faculty members in our departments for providing us with necessary space
and for putting up with our tantrums.
<!--l. 125--><p class="indent" > We would like to thank the professors, staff and students affiliated with the Wadhwani
Electronics lab at IIT Bombay for trying out eSim in lab courses and for the useful
suggestions. We would like to thank Abhishek Pawar for creating Spoken Tutorials on KiCad.
We would like to thank Saket Choudhary for making the netlist files generated by KiCad
compatible with Ngspice.<br
class="newline" />
<div class="center"
>
<!--l. 134--><p class="noindent" >
<div class="tabular"> <table id="TBL-1" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-1-1g"><col
id="TBL-1-1"><col
id="TBL-1-2"><col
id="TBL-1-3"></colgroup><tr
style="vertical-align:baseline;" id="TBL-1-1-"><td style="white-space:nowrap; text-align:center;" id="TBL-1-1-1"
class="td11"></td><td style="white-space:nowrap; text-align:center;" id="TBL-1-1-2"
class="td11">Kannan M. Moudgalya</td>
</tr><tr
class="vspace" style="font-size:14.22636pt"><td
> </td><td
> </td><td
> </td></tr><tr
style="vertical-align:baseline;" id="TBL-1-2-"><td style="white-space:nowrap; text-align:center;" id="TBL-1-2-1"
class="td11"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-1-2-2"
class="td11"> IIT Bombay </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-1-3-"><td style="white-space:nowrap; text-align:center;" id="TBL-1-3-1"
class="td11"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-1-3-2"
class="td11"> 22 August 2015 </td></tr></table>
</div></div>
<h3 class="likesectionHead"><a
id="x1-4000"></a>List of Acronyms</h3>
<a
id="Q1-1-7"></a>
<div class="tabular"> <table id="TBL-2" class="tabular"
cellspacing="0" cellpadding="0"
><colgroup id="TBL-2-1g"><col
id="TBL-2-1"><col
id="TBL-2-2"></colgroup><tr
style="vertical-align:baseline;" id="TBL-2-1-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-1-1"
class="td11"> </td></tr><tr
style="vertical-align:baseline;" id="TBL-2-2-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-2-1"
class="td11">ADC</td><td style="white-space:wrap; text-align:left;" id="TBL-2-2-2"
class="td11"><!--l. 4--><p class="noindent" >Analog to Digital Converter </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-3-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-3-1"
class="td11">BJT </td><td style="white-space:wrap; text-align:left;" id="TBL-2-3-2"
class="td11"><!--l. 5--><p class="noindent" >Bipolar Junction Transistor </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-4-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-4-1"
class="td11">BV </td><td style="white-space:wrap; text-align:left;" id="TBL-2-4-2"
class="td11"><!--l. 6--><p class="noindent" >Breakdown Voltage </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-5-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-5-1"
class="td11">CCCS </td><td style="white-space:wrap; text-align:left;" id="TBL-2-5-2"
class="td11"><!--l. 7--><p class="noindent" >Current Controlled Current Source </td></tr><tr
style="vertical-align:baseline;" id="TBL-2-6-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-6-1"
class="td11">CCVS </td> <td style="white-space:wrap; text-align:left;" id="TBL-2-6-2"
class="td11"><!--l. 8--><p class="noindent" >Current Controlled Voltage Source</td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-7-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-7-1"
class="td11">CPU </td><td style="white-space:wrap; text-align:left;" id="TBL-2-7-2"
class="td11"><!--l. 9--><p class="noindent" >Central Processing Unit </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-8-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-8-1"
class="td11">DAC </td><td style="white-space:wrap; text-align:left;" id="TBL-2-8-2"
class="td11"><!--l. 10--><p class="noindent" >Digital to Analog Converter </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-9-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-9-1"
class="td11">DRC </td><td style="white-space:wrap; text-align:left;" id="TBL-2-9-2"
class="td11"><!--l. 11--><p class="noindent" >Design Rules Check </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-10-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-10-1"
class="td11">DXF </td><td style="white-space:wrap; text-align:left;" id="TBL-2-10-2"
class="td11"><!--l. 12--><p class="noindent" >Drawing Interchange Format or Drawing Exchange Format </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-11-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-11-1"
class="td11">EDA </td><td style="white-space:wrap; text-align:left;" id="TBL-2-11-2"
class="td11"><!--l. 13--><p class="noindent" >Electronic Design Automation </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-12-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-12-1"
class="td11">ERC </td><td style="white-space:wrap; text-align:left;" id="TBL-2-12-2"
class="td11"><!--l. 14--><p class="noindent" >Electric Rules Check </td></tr><tr
style="vertical-align:baseline;" id="TBL-2-13-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-13-1"
class="td11">FOSS </td> <td style="white-space:wrap; text-align:left;" id="TBL-2-13-2"
class="td11"><!--l. 15--><p class="noindent" >Free and Open Source Software</td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-14-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-14-1"
class="td11">FPGA </td><td style="white-space:wrap; text-align:left;" id="TBL-2-14-2"
class="td11"><!--l. 16--><p class="noindent" >Field Programmable Gate Array </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-15-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-15-1"
class="td11">gEDA </td><td style="white-space:wrap; text-align:left;" id="TBL-2-15-2"
class="td11"><!--l. 17--><p class="noindent" >Electronic Design Automation released under GPL </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-16-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-16-1"
class="td11">GUI </td><td style="white-space:wrap; text-align:left;" id="TBL-2-16-2"
class="td11"><!--l. 18--><p class="noindent" >Graphical User Interface </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-17-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-17-1"
class="td11">HDL </td><td style="white-space:wrap; text-align:left;" id="TBL-2-17-2"
class="td11"><!--l. 19--><p class="noindent" >Hardware Descrition Language </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-18-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-18-1"
class="td11">HPGL </td><td style="white-space:wrap; text-align:left;" id="TBL-2-18-2"
class="td11"><!--l. 20--><p class="noindent" >Hewlett-Packard Graphics Language </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-19-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-19-1"
class="td11">IC </td><td style="white-space:wrap; text-align:left;" id="TBL-2-19-2"
class="td11"><!--l. 21--><p class="noindent" >Integrated Circuit </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-20-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-20-1"
class="td11">ICT </td><td style="white-space:wrap; text-align:left;" id="TBL-2-20-2"
class="td11"><!--l. 22--><p class="noindent" >Information and Communication Technology </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-21-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-21-1"
class="td11">IGBT </td><td style="white-space:wrap; text-align:left;" id="TBL-2-21-2"
class="td11"><!--l. 23--><p class="noindent" >Insulated Gate Bipolar Transistor </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-22-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-22-1"
class="td11">JFET </td><td style="white-space:wrap; text-align:left;" id="TBL-2-22-2"
class="td11"><!--l. 24--><p class="noindent" >Junction Field Effect Transistor </td></tr><tr
style="vertical-align:baseline;" id="TBL-2-23-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-23-1"
class="td11">KCE </td> <td style="white-space:wrap; text-align:left;" id="TBL-2-23-2"
class="td11"><!--l. 25--><p class="noindent" >Kirchoff’s Current Law</td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-24-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-24-1"
class="td11">KVE </td><td style="white-space:wrap; text-align:left;" id="TBL-2-24-2"
class="td11"><!--l. 26--><p class="noindent" >Kirchoff’s Voltage Law </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-25-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-25-1"
class="td11">LXDE </td><td style="white-space:wrap; text-align:left;" id="TBL-2-25-2"
class="td11"><!--l. 27--><p class="noindent" >Lightweight X11 Desktop Environment </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-26-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-26-1"
class="td11">MNA </td><td style="white-space:wrap; text-align:left;" id="TBL-2-26-2"
class="td11"><!--l. 28--><p class="noindent" >Modified Nodal Analysis </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-27-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-27-1"
class="td11">MOSFET</td><td style="white-space:wrap; text-align:left;" id="TBL-2-27-2"
class="td11"><!--l. 29--><p class="noindent" >Metal Oxide Semiconductor Field Effect Transistor </td></tr><tr
style="vertical-align:baseline;" id="TBL-2-28-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-28-1"
class="td11">NMEICT </td> <td style="white-space:wrap; text-align:left;" id="TBL-2-28-2"
class="td11"><!--l. 30--><p class="noindent" >National Mission on Education through ICT</td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-29-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-29-1"
class="td11">Op-amp </td><td style="white-space:wrap; text-align:left;" id="TBL-2-29-2"
class="td11"><!--l. 31--><p class="noindent" >Operational Amplifier </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-30-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-30-1"
class="td11">OTC </td><td style="white-space:wrap; text-align:left;" id="TBL-2-30-2"
class="td11"><!--l. 32--><p class="noindent" >Oscad Textbook Companion </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-31-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-31-1"
class="td11">PCB </td><td style="white-space:wrap; text-align:left;" id="TBL-2-31-2"
class="td11"><!--l. 33--><p class="noindent" >Printed Circuit Board </td></tr><tr
style="vertical-align:baseline;" id="TBL-2-32-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-32-1"
class="td11">RS </td> <td style="white-space:wrap; text-align:left;" id="TBL-2-32-2"
class="td11"><!--l. 34--><p class="noindent" >Ohmic Resistance</td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-33-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-33-1"
class="td11">SELF </td><td style="white-space:wrap; text-align:left;" id="TBL-2-33-2"
class="td11"><!--l. 35--><p class="noindent" >Spoken Tutorial based Education and Learning through Free
FOSS study </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-34-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-34-1"
class="td11">SMCSim </td><td style="white-space:wrap; text-align:left;" id="TBL-2-34-2"
class="td11"><!--l. 36--><p class="noindent" >Scilab based Mini Circuit Simulator </td></tr><tr
style="vertical-align:baseline;" id="TBL-2-35-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-35-1"
class="td11">SVF </td> <td style="white-space:wrap; text-align:left;" id="TBL-2-35-2"
class="td11"><!--l. 37--><p class="noindent" >Serial Vector Format</td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-36-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-36-1"
class="td11">T10KT </td><td style="white-space:wrap; text-align:left;" id="TBL-2-36-2"
class="td11"><!--l. 38--><p class="noindent" >Teach 10,000 Teachers </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-37-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-37-1"
class="td11">VCCS </td><td style="white-space:wrap; text-align:left;" id="TBL-2-37-2"
class="td11"><!--l. 39--><p class="noindent" >Voltage Controlled Current Source </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-38-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-38-1"
class="td11">VCVS </td><td style="white-space:wrap; text-align:left;" id="TBL-2-38-2"
class="td11"><!--l. 40--><p class="noindent" >Voltage Controlled Voltage source </td>
</tr><tr
style="vertical-align:baseline;" id="TBL-2-39-"><td style="white-space:nowrap; text-align:left;" id="TBL-2-39-1"
class="td11"> </td> </tr></table></div>
<!--l. 73--><p class="indent" >
<!--l. 8--><p class="indent" >
<h2 class="chapterHead"><span class="titlemark">Chapter 1</span><br /><a
id="x1-50001"></a>Introduction</h2> Electronic systems are an integral part of human life. They have
simplified our lives to a great extent. Starting from small systems made of a few
discrete components to the present day integrated circuits (ICs) with millions of
logic gates, electronic systems have undergone a sea change. As a result, design of
electronic systems too have become extremely difficult and time consuming. Thanks to
a host of computer aided design tools, we have been able to come up with quick
and efficient designs. These are called <span
class="cmtt-10x-x-109">Electronic Design Automation </span>or <span
class="cmtt-10x-x-109">EDA</span>
<a
id="dx1-5001"></a>tools.
<!--l. 20--><p class="noindent" >Let us see the steps involved in EDA.<a
id="dx1-5002"></a> In the first stage, the specifications of the system are
laid out. These specifications are then converted to a design. The design could be in
the form of a circuit schematic, logical description using an HDL language, etc.
The design is then simulated and re-designed, if needed, to achieve the desired
results. Once simulation achieves the specifications, the design is either converted to
a PCB, a chip layout, or ported to an FPGA. The final product is again tested
for specifications. The whole cycle is repeated until desired results are obtained
<span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>.
<!--l. 31--><p class="indent" > A person who builds an electronic system has to first design the circuit, produce a virtual
representation of it through a schematic for easy comprehension, simulate it and finally
convert it into a Printed Circuit Board (PCB). <a
id="dx1-5003"></a>There are various tools available that help do
this. Some of the popular EDA tools are those of <span
class="cmtt-10x-x-109">Cadence</span>, <span
class="cmtt-10x-x-109">Synopys</span>, <span
class="cmtt-10x-x-109">Mentor Graphics </span>and
<span
class="cmtt-10x-x-109">Xilinx</span>. Although these are fairly comprehensive and high end, their licences are expensive,
being proprietary.
<!--l. 40--><p class="indent" > There are some free and open source EDA tools like <span
class="cmtt-10x-x-109">gEDA</span>, <span
class="cmtt-10x-x-109">KiCad </span>and <span
class="cmtt-10x-x-109">Ngspice</span>. The main
drawback of these open source tools is that they are not comprehensive. Some of them are
capable of PCB design (e.g. <span
class="cmtt-10x-x-109">KiCad</span>) while some of them are capable of performing simulations
(e.g. <span
class="cmtt-10x-x-109">gEDA</span>). To the best of our knowledge, there is no open source software that can perform
circuit design, simulation and layout design together. eSim is capable of doing all of the
above.
<!--l. 49--><p class="indent" > eSim is a free and open source EDA tool. It is an acronym for <span
class="cmbx-10x-x-109">O</span>pen <span
class="cmbx-10x-x-109">s</span>ource <span
class="cmbx-10x-x-109">c</span>omputer
<span
class="cmbx-10x-x-109">a</span>ided <span
class="cmbx-10x-x-109">d</span>esign. eSim is created using open source software packages, such as KiCad, Ngspice,
Scilab and Python. <a
id="dx1-5004"></a><a
id="dx1-5005"></a> <a
id="dx1-5006"></a><a
id="dx1-5007"></a> Using eSim, one can create circuit schematics, perform simulations
and design PCB layouts. It can create or edit new device models, and create or
edit subcircuits for simulation. It also has a Scilab based Mini Circuit Simulator
(SMCSim), <a
id="dx1-5008"></a>which is capable of giving the circuit equations for each simulation
step. This feature is unique to eSim. Because of these reasons, eSim is expected to
be useful to students, teachers and other professionals who would want to study
and/or design electronic systems. eSim is also useful for entrepreneurs and small scale
enterprises who do not have the capability to invest in heavily priced proprietary
tools.
<!--l. 66--><p class="indent" > This book introduces eSim to the reader and illustrates all the features of eSim with
examples. Chapter <span
class="cmbx-10x-x-109">??</span> gives step by step instructions to install eSim on a typical computer
system and to validate the installation. The software architecture of eSim is presented in
Chapter <a
href="#x1-70003">3<!--tex4ht:ref: chap3 --></a>. Chapter <a
href="#x1-230004">4<!--tex4ht:ref: chap4 --></a> gets the user started with eSim. It takes them through a tour of eSim
with the help of a simple RC circuit example. Chapter <a
href="#x1-320005">5<!--tex4ht:ref: chap5 --></a> explains how to create circuit
schematics using eSim, in detail using examples. Chapter <a
href="#x1-450006">6<!--tex4ht:ref: chap6 --></a> illustrates how to simulate
circuits using eSim. Chapter <a
href="#x1-600007">7<!--tex4ht:ref: chap7 --></a> explains PCB design using eSim, in detail. The advanced
features of eSim such as Model Builder covered in Chapter <span
class="cmbx-10x-x-109">??</span> and Sub circuiting is
covered in Chapter <span
class="cmbx-10x-x-109">??</span>. Appendix <a
href="#x1-79000A">A<!--tex4ht:ref: ch:appen --></a> presents examples, that have been worked
out using eSim, from the book <span
class="cmtt-10x-x-109">Microelectronic Circuits </span>by Sedra and Smith
<span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>. Appendix <span
class="cmbx-10x-x-109">??</span> explains the resources available for the use and promotion of
eSim.
<!--l. 79--><p class="indent" > The following convention has been adopted throughout this book. All the menu names,
options under each menu item, tool names, certain points to be noted, etc., are given in
<span
class="cmti-10x-x-109">italics</span>. Some keywords, names of certain windows/dialog boxes, names of some
files/projects/folders, messages displayed during an activity, names of websites, component
references, etc., are given in <span
class="cmtt-10x-x-109">typewriter </span>font. Some key presses, e.g. <span
class="cmtt-10x-x-109">Enter </span>key, <span
class="cmtt-10x-x-109">F1 </span>key, <span
class="cmtt-10x-x-109">y </span>for
yes, etc., are also mentioned in <span
class="cmtt-10x-x-109">typewriter </span>font.
<h2 class="chapterHead"><span class="titlemark">Chapter 2</span><br /><a
id="x1-60002"></a>Installing and Setting up eSim</h2>
<!--l. 2--><p class="indent" >
<h2 class="chapterHead"><span class="titlemark">Chapter 3</span><br /><a
id="x1-70003"></a>Architecture of eSim</h2>
<!--l. 6--><p class="noindent" >eSim is a CAD <a
id="dx1-7001"></a>tool that helps electronic system designers to design, test and analyse their
circuits. But the important feature of this tool is that it is open source and hence the user can
modify the source as per his/her need. The software provides a generic, modular and
extensible platform for experiment with electronic circuits. This software runs on all
Ubuntu Linux distributions. It uses <span
class="cmtt-10x-x-109">Python</span>, <span
class="cmtt-10x-x-109">KiCad</span>, <span
class="cmtt-10x-x-109">Ngspice </span>and <span
class="cmtt-10x-x-109">Scilab </span>(5.4.0 or
above).
<!--l. 15--><p class="indent" > The objective behind the development of eSim is to provide an open source EDA solution
for electronics and electrical engineers. The software should be capable of performing
schematic creation, PCB design and circuit simulation (analog, digital and mixed signal). It
should provide facilities to create new models and components. In addition to this, it should
have the capability to explain the circuit by giving symbolic equations and numerical
values. The architecture of eSim has been designed by keeping these objectives in
mind.
<h3 class="sectionHead"><span class="titlemark">3.1 </span> <a
id="x1-80003.1"></a>Modules used in eSim</h3>
<!--l. 25--><p class="noindent" >Various open-source tools have been used for the underlying build-up of eSim. In this section
we will give a brief idea about all the modules used in eSim.
<!--l. 27--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.1 </span> <a
id="x1-90003.1.1"></a>EEschema</h4>
<a
id="dx1-9001"></a>
<a
id="dx1-9002"></a>
<!--l. 28--><p class="noindent" >EEschema is an integrated software where all functions of circuit drawing, control, layout,
library management and access to the PCB design software are carried out within itself. It is
the schematic editor tool used in KiCad <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>. EEschema is intended to work with PCB layout
software such as Pcbnew. It provides netlist that describes the electrical connections of the
PCB. EEschema also integrates a component editor which allows the creation, editing and
visualisation of components. It also allows the user to effectively handle the symbol
libraries i.e; import, export, addition and deletion of library components. EEschema
also integrates the following additional but essential functions needed for a modern
schematic capture software: <a
id="x1-9003r1"></a>1. Design rules check <a
id="dx1-9004"></a>(<span
class="cmtt-10x-x-109">DRC</span>) for the automatic control of
incorrect connections and inputs of components left unconnected. <a
id="x1-9005r2"></a>2. Generation of
layout files in <span
class="cmtt-10x-x-109">POSTSCRIPT</span> <a
id="dx1-9006"></a>or <span
class="cmtt-10x-x-109">HPGL</span> <a
id="dx1-9007"></a>format. <a
id="x1-9008r3"></a>3. Generation of layout files printable via
printer. <a
id="x1-9009r4"></a>4. Bill of material generation. <a
id="x1-9010r5"></a>5. Netlist generation for PCB layout or for
simulation.
This module is indicated by the label 1 in Fig. <a
href="#x1-220011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 49--><p class="indent" > As Eeschema is originally intended for PCB Design, there are no fictitious
components<span class="footnote-mark"><a
href="eSim2.html#fn1x3"><sup class="textsuperscript">1</sup></a></span><a
id="x1-9011f1"></a>
such as voltage or current sources. Thus, we have added a new library for different types of
voltage and current sources such as sine, pulse and square wave. We have also built a library
which gives printing and plotting solutions. This extension, developed by us for eSim, is
indicated by the label 2 in Fig. <a
href="#x1-220011">3.1<!--tex4ht:ref: blockd --></a>.
<h4 class="subsectionHead"><span class="titlemark">3.1.2 </span> <a
id="x1-100003.1.2"></a>CvPcb</h4>
<a
id="dx1-10001"></a>
<!--l. 62--><p class="noindent" >CvPcb is a tool that allows the user to associate components in the schematic to component
footprints when designing the printed circuit board. CvPcb is the footprint editor tool in
KiCad <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>. Typically the netlist file generated by EEschema does not specify which printed
circuit board footprint is associated with each component in the schematic. However, this is
not always the case as component footprints can be associated during schematic capture by
setting the component’s footprint field. CvPcb provides a convenient method of associating
footprints to components. It provides footprint list filtering, footprint viewing, and 3D
component model viewing to help ensure that the correct footprint is associated with each
component. Components can be assigned to their corresponding footprints manually or
automatically by creating equivalence files. Equivalence files are look up tables
associating each component with its footprint. This interactive approach is simpler
and less error prone than directly associating footprints in the schematic editor.
This is because CvPcb not only allows automatic association, but also allows to
see the list of available footprints and displays them on the screen to ensure the
correct footprint is being associated. This module is indicated by the label 3 in
Fig. <a
href="#x1-220011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 84--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.3 </span> <a
id="x1-110003.1.3"></a>Pcbnew</h4>
<a
id="dx1-11001"></a>
<!--l. 85--><p class="noindent" >Pcbnew is a powerful printed circuit board software tool. It is the layout editor tool
used in KiCad <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>. It is used in association with the schematic capture software
EEschema, which provides the netlist. Netlist describes the electrical connections of
the circuit. CvPcb is used to assign each component, in the netlist produced by
EEschema, to a module that is used by Pcbnew. The features of Pcbnew are given
below:
<ul class="itemize1">
<li class="itemize">It manages libraries of modules. Each module is a drawing of the physical
component including its footprint<a
id="dx1-11002"></a> - the layout of pads providing connections to the
component. The required modules are automatically loaded during the reading of
the netlist produced by CvPcb.
</li>
<li class="itemize">Pcbnew integrates automatically and immediately any circuit modification by
removal of any erroneous tracks, addition of new components, or by modifying
any value (and under certain conditions any reference) of the old or new modules,
according to the electrical connections appearing in the schematic.
</li>
<li class="itemize">This tool provides a rats nest display, a hairline connecting the pads of modules
connected on the schematic. These connections move dynamically as track and
module movements are made.
</li>
<li class="itemize">It has an active Design Rules Check (<span
class="cmtt-10x-x-109">DRC</span>) which automatically indicates any error
of track layout in real time.
</li>
<li class="itemize">It automatically generates a copper plane, with or without thermal breaks on the
pads.
</li>
<li class="itemize">It has a simple but effective auto router to assist in the production of the
circuit. An export/import in <span
class="cmtt-10x-x-109">SPECCTRA </span>dsn format allows to use more advanced
auto-routers.
</li>
<li class="itemize">It provides options specifically for the production of ultra high frequency circuits
(such as pads of trapezoidal and complex form, automatic layout of coils on the
printed circuit).
</li>
<li class="itemize">Pcbnew displays the elements (tracks, pads, texts, drawings and more) as actual size
and according to personal preferences such as:
<ul class="itemize2">
<li class="itemize">display in full or outline.
</li>
<li class="itemize">display the track/pad clearance.</li></ul>
</li></ul>
<!--l. 125--><p class="noindent" >This module is indicated by the label 4 in Fig. <a
href="#x1-220011">3.1<!--tex4ht:ref: blockd --></a>.
<h4 class="subsectionHead"><span class="titlemark">3.1.4 </span> <a
id="x1-120003.1.4"></a>KiCad to Ngspice converter</h4>
<!--l. 128--><p class="noindent" >It converts KiCad generated netlists to Ngspice compatible format. Also it facilitates adding
model library of components and subcircuits. Following are the different functionality lies
under conversion.
<h5 class="subsubsectionHead"><a
id="x1-130003.1.4"></a>Analysis Inserter</h5>
<!--l. 130--><p class="noindent" >This feature helps the user to perform different types of analysis such as Operating
point analysis, <a
id="dx1-13001"></a>DC analysis, <a
id="dx1-13002"></a>AC analysis, <a
id="dx1-13003"></a>transient analysis, <a
id="dx1-13004"></a>etc. It has the facility
to
<ul class="itemize1">
<li class="itemize">Insert type of analysis such as AC or DC or Transient
</li>
<li class="itemize">Insert values for analysis</li></ul>
<!--l. 139--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-140003.1.4"></a>Source Details</h5>
<!--l. 140--><p class="noindent" >eSim sources are added from eSim-sources package. Sources auch as SINE, AC, DC, PULSE
are in this lobrary. Input to allthe sources adde in the circuit are given in source
details.
<h5 class="subsubsectionHead"><a
id="x1-150003.1.4"></a>Ngspice Model</h5>
<!--l. 142--><p class="noindent" >eSim adds Ngspice model using this facility.
<h5 class="subsubsectionHead"><a
id="x1-160003.1.4"></a>Device Modeling</h5>
<!--l. 144--><p class="noindent" >Devices like Diode, JFET, MOSFET, IGBT, MOS etc added in the circut can be modeled
using device model libraries. eSim also proveides editing and adding new model libraries.
While converting Kicad to Ngspice these library files added to the corresponding devices uesd
in the circuit.
<h5 class="subsubsectionHead"><a
id="x1-170003.1.4"></a>Subcircuits</h5>
<!--l. 146--><p class="noindent" >Subcircuits are the circuits within a circuits. Subcircuiting helps to reuse the part of the
circuits. The sub circuit in the main circuits are added using this facility. Also, eSim provides
us with editing the already exixting subcircuits. Sub circuits are saved separately in different
folders.
<h4 class="subsectionHead"><span class="titlemark">3.1.5 </span> <a
id="x1-180003.1.5"></a>Model Builder</h4>
<a
id="dx1-18001"></a>
<!--l. 149--><p class="noindent" >This tool provides the facility to define a new model for devices such as, <a
id="x1-18002r1"></a>1. Diode <a
id="x1-18003r2"></a>2. Bipolar
Junction Transistor (BJT) <a
id="x1-18004r3"></a>3. Metal Oxide Semiconductor Field Effect Transistor
(MOSFET) <a
id="x1-18005r4"></a>4. Junction Field Effect Transistor (JFET) <a
id="x1-18006r5"></a>5. IGBT and <a
id="x1-18007r6"></a>6. Magnetic
core.
This module also helps edit existing models. It is developed by us for eSim and it is indicated
by the label 5 in Fig. <a
href="#x1-220011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 163--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.6 </span> <a
id="x1-190003.1.6"></a>Subcircuit Builder</h4>
<a
id="dx1-19001"></a>
<!--l. 163--><p class="noindent" >This module allows the user to create a subcircuit for a component. Once the subcircuit for a
component is created, the user can use it in other circuits. It has the facility to define new
components such as, Op-amps and IC-555. This component also helps edit existing
subcircuits. This module is developed by us for eSim and it is indicated by the label 6 in
Fig. <a
href="#x1-220011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 171--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.7 </span> <a
id="x1-200003.1.7"></a>KiCad to Ngspice netlist converter</h4>
<a
id="dx1-20001"></a>
<a
id="dx1-20002"></a>
<a
id="dx1-20003"></a>
<!--l. 173--><p class="noindent" >It converts KiCad generated netlists to Ngspice (see Sec. <a
href="#x1-210003.1.8">3.1.8<!--tex4ht:ref: sec:ngspice --></a>) compatible format. It has the
capability to <a
id="x1-20004r1"></a>1. Insert parameters for fictitious components <a
id="x1-20005r2"></a>2. Convert IC into discrete
blocks <a
id="x1-20006r3"></a>3. Insert D-A and A-D converter at appropriate places <a
id="x1-20007r4"></a>4. Insert plotting
and printing statements in netlist and <a
id="x1-20008r5"></a>5. Find current through all components.
<!--l. 184--><p class="indent" > This module is developed by us for eSim and it is indicated by the label 7 in
Fig. <a
href="#x1-220011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 187--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.8 </span> <a
id="x1-210003.1.8"></a>Ngspice</h4>
<a
id="dx1-21001"></a>
<!--l. 188--><p class="noindent" >Ngspice is a general purpose circuit simulation program for nonlinear dc, nonlinear transient,
and linear ac analyses <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>. Circuits may contain resistors, capacitors, inductors, mutual
inductors, independent voltage and current sources, four types of dependent sources, lossless
and lossy transmission lines (two separate implementations), switches, uniform
distributed RC lines, and the five most common semiconductor devices: diodes,
<a
id="dx1-21002"></a>BJTs, <a
id="dx1-21003"></a>JFETs, MESFETs, and MOSFET. <a
id="dx1-21004"></a>This module is indicated by the label 9 in
Fig. <a
href="#x1-220011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 199--><p class="noindent" >
<h3 class="sectionHead"><span class="titlemark">3.2 </span> <a
id="x1-220003.2"></a>Work flow of eSim</h3>
<!--l. 200--><p class="noindent" >Fig. <a
href="#x1-220011">3.1<!--tex4ht:ref: blockd --></a> shows the work flow in eSim. The block diagram consists of mainly three
parts:
<ul class="itemize1">
<li class="itemize">Schematic Editor
</li>
<li class="itemize">PCB Layout Editor
</li>
<li class="itemize">Circuit Simulators</li></ul>
<!--l. 208--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-220011"></a>
<!--l. 211--><p class="noindent" ><img
src="figures/blockdiagram.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 3.1: </span><span
class="content">Work flow in eSim. Boxes with dotted lines denote the modules developed
in this work.</span></div><!--tex4ht:label?: x1-220011 -->
<!--l. 216--><p class="indent" > </div><hr class="endfigure">
<!--l. 218--><p class="indent" > Here we explain the role of each block in designing electronic systems. Circuit design is the
first step in the design of an electronic circuit. Generally a circuit diagram is drawn on a
paper, and then entered into a computer using a schematic editor. EEschema is the schematic
editor for eSim. Thus all the functionalities of EEschema are naturally available in eSim.
<a
id="dx1-22002"></a>
<!--l. 225--><p class="indent" > Libraries for components, explicitly or implicitly supported by Ngspice, have been created
using the features of EEschema. As EEschema is originally intended for PCB design, there are
no fictitious components such as voltage or current sources. Thus, a new library for different
types of voltage and current sources such as sine, pulse and square wave, has been added in
eSim. A library which gives the functionality of printing and plotting has also been
created.
<!--l. 234--><p class="indent" > The schematic editor provides a netlist file, which describes the electrical connections of
the design. In order to create a PCB layout, physical components are required to be mapped
into their footprints. To perform component to footprint mapping, CvPcb is used. Footprints
have been created for the components in the newly created libraries. Pcbnew is used to draw
a PCB layout.
<!--l. 242--><p class="indent" > After designing a circuit, it is essential to check the integrity of the circuit design. In the
case of large electronic circuits, breadboard testing is impractical. In such cases, electronic
system designers rely heavily on simulation. The accuracy of the simulation results can be
increased by accurate modeling of the circuit elements. Model Builder provides the facility to
define a new model for devices and edit existing models. Complex circuit elements can be
created by hierarchical modeling. Subcircuit Builder provides an easy way to create a
subcircuit.
<!--l. 253--><p class="indent" > The netlist generated by Schematic Editor cannot be directly used for simulation
due to compatibility issues. Netlist Converter converts it into Ngspice compatible
format. The type of simulation to be performed and the corresponding options are
provided through a graphical user interface (GUI). This is called Analysis Inserter in
eSim.
<!--l. 260--><p class="indent" > eSim uses Ngspice for analog, digital, mixed-level/mixed-signal circuit simulation. Ngspice
is based on three open source software packages<span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>:
<ul class="itemize1">
<li class="itemize">Spice3f5 (analog circuit simulator)
</li>
<li class="itemize">Cider1b1 (couples Spice3f5 circuit simulator to DSIM device simulator)
</li>
<li class="itemize">Xspice (code modeling support and simulation of digital components through an
event driven algorithm)</li></ul>
<!--l. 268--><p class="noindent" >It is a part of gEDA <a
id="dx1-22003"></a>project. Ngspice is capable of simulating devices with BSIM, <a
id="dx1-22004"></a>EKV, HICUM, <a
id="dx1-22005"></a><a
id="dx1-22006"></a>
HiSim, <a
id="dx1-22007"></a>PSP, <a
id="dx1-22008"></a>and PTM <a
id="dx1-22009"></a>models. It is widely used due to its accuracy even for the latest
technology devices.
<h2 class="chapterHead"><span class="titlemark">Chapter 4</span><br /><a
id="x1-230004"></a>Getting Started</h2>
<!--l. 5--><p class="noindent" >In this chapter we will get started with eSim. We will run through the various options
available with an example circuit. Referring to this chapter will make one familiar with
eSim and will help plan the project before actually designing a circuit. Lets get
started.
<h3 class="sectionHead"><span class="titlemark">4.1 </span> <a
id="x1-240004.1"></a>eSim Main Window</h3>
<!--l. 12--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">4.1.1 </span> <a
id="x1-250004.1.1"></a>Workspace</h4>
<!--l. 13--><p class="noindent" >After installtion is completed, when the eSim is run the first window that appears is
workspace dialog as shown in Fig. <a
href="#x1-250011">4.1<!--tex4ht:ref: workspace --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-250011"></a>
<!--l. 16--><p class="noindent" ><img
src="figures/workspace.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.1: </span><span
class="content">eSim-Workspace</span></div><!--tex4ht:label?: x1-250011 -->
<!--l. 19--><p class="indent" > </div><hr class="endfigure">
<!--l. 21--><p class="indent" > The defalut eSim-Workspace can be chosen if the <span
class="cmti-10x-x-109">ok </span>or <span
class="cmti-10x-x-109">cancel </span>button is clicked. Else to
create new workspace <span
class="cmti-10x-x-109">browse </span>button is used.
<h4 class="subsectionHead"><span class="titlemark">4.1.2 </span> <a
id="x1-260004.1.2"></a>Main-GUI</h4>
<!--l. 24--><p class="noindent" >The main GUI window of eSim is as shown in Fig. <a
href="#x1-260012">4.2<!--tex4ht:ref: maingui --></a> <hr class="figure"><div class="figure"
>
<a
id="x1-260012"></a>
<!--l. 27--><p class="noindent" ><img
src="figures/maingui.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.2: </span><span
class="content">eSim Main GUI</span></div><!--tex4ht:label?: x1-260012 -->
<!--l. 30--><p class="indent" > </div><hr class="endfigure">
<!--l. 31--><p class="indent" > The eSim main GUI window consists the following symbols.
<dl class="enumerate"><dt class="enumerate">
1. </dt><dd
class="enumerate">Toolbar
</dd><dt class="enumerate">
2. </dt><dd
class="enumerate">Menubar
</dd><dt class="enumerate">
3. </dt><dd
class="enumerate">Project explorer
</dd><dt class="enumerate">
4. </dt><dd
class="enumerate">Dockarea
</dd><dt class="enumerate">
5. </dt><dd
class="enumerate">Console area</dd></dl>
<h5 class="subsubsectionHead"><a
id="x1-270004.1.2"></a>Toolbar</h5>
<ul class="itemize1">
<li class="itemize">Open Schematic The first tool on the toolbar i.e. <span
class="cmti-10x-x-109">Schematic Editor</span><a
id="dx1-27001"></a>. Doing so
will open EEschema, the schematic editor used in eSim. If a new project is being
created, one will get the schematic editor window with an info dialog box. This is
illustrated in Fig. <a
href="#x1-270023">4.3<!--tex4ht:ref: warning --></a>. This warning can be safely ignored by clicking on <span
class="cmtt-10x-x-109">OK</span>.
<!--l. 50--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-270023"></a> <img
src="figures/warning.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.3: </span><span
class="content">Schematic Editor Window</span></div><!--tex4ht:label?: x1-270023 -->
<!--l. 55--><p class="noindent" ></div><hr class="endfigure">
<!--l. 57--><p class="noindent" >However, if an already existing project is opened, one would get the schematic
editor window along with a Load error<a
id="dx1-27003"></a>. This is illustrated in Fig. <a
href="#x1-270044">4.4<!--tex4ht:ref: schematic-error --></a>. This
error occurs because the schematic that is opened has not been loaded with
the libraries mentioned in the Load Error message. Close the Load Error
message by clicking on the <span
class="cmtt-10x-x-109">Close </span>button. The RC circuit diagram opens up
as shown in Fig. <a
href="#x1-270055">4.5<!--tex4ht:ref: eeschema --></a>. Now the circuit schematic can be created/edited. To
know how to use the schematic editor to create circuit schematics, refer to
Chapter <a
href="#x1-320005">5<!--tex4ht:ref: chap5 --></a>.
<!--l. 68--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-270044"></a> <img
src="figures/schematic-error.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.4: </span><span
class="content">Schematic Editor Window of an existing Project</span></div><!--tex4ht:label?: x1-270044 -->
<!--l. 73--><p class="noindent" ></div><hr class="endfigure">
<!--l. 76--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-270055"></a> <img
src="figures/eeschema.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.5: </span><span
class="content">Schematic Editor Window of an existing Project</span></div><!--tex4ht:label?: x1-270055 -->
<!--l. 81--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Convert Kicad to Ngspice: The second tool on the toolbar is the <span
class="cmti-10x-x-109">Kicad to Ngspice</span>
<span
class="cmti-10x-x-109">Converter </span>. Before one uses this tool, one should have already created the
spice netlist file (.cir). This file is not compatible with Ngspice. The analysis
window consists of total five tabs as namely <span
class="cmti-10x-x-109">Analysis, Device Model, Source</span>
<span
class="cmti-10x-x-109">Details, Model Library, Subcircuits</span>, out of which only analysis tab is static and
remaining tabs are dynamic. The widgets in the dynamic tab depends on the
components included in the circuit. It consists of the parameters depending
upon the type of sources used. Once the values have been entered, press the
<span
class="cmtt-10x-x-109">Convert </span>key. It will generate <span
class="cmtt-10x-x-109">.cir.out </span>and <span
class="cmtt-10x-x-109">.cir.ckt </span>files in the same project
directory.
</li>
<li class="itemize">Simulation: The suitable netlist generated using <span
class="cmti-10x-x-109">Kicad to Ngspice</span>. This file is
stimulated using Ngspice tool. Clicking on this tool <span
class="cmti-10x-x-109">Simulation</span>, Ngspice and
Pthon plotting window will open, as shown in Fig. <a
href="#x1-270066">4.6<!--tex4ht:ref: simulation-op --></a>. It shows the output
waweform of project. <hr class="figure"><div class="figure"
><a
id="x1-270066"></a> <img
src="figures/simulation-op.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.6: </span><span
class="content">Simulation Output in Python Plotting Window</span></div><!--tex4ht:label?: x1-270066 -->
<!--l. 96--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Foot Print Editor: Clicking on the <span
class="cmti-10x-x-109">Footprint Editor </span>tool will open the <span
class="cmtt-10x-x-109">CvPcb</span> <a
id="dx1-27007"></a>window.
This window will ideally open the .net file for the current project. So, before using this
tool, one should have the netlist for PCB design (a .net file). To know more about how
to generate netlist for PCB, refer to Sec. <a
href="#x1-620007.1.1">7.1.1<!--tex4ht:ref: netc --></a>.
<!--l. 106--><p class="noindent" >Open the project <span
class="cmtt-10x-x-109">RC</span><span
class="cmtt-10x-x-109">_pcb </span>available in the <span
class="cmtt-10x-x-109">Examples </span>folder downloaded from the eSim
website. On clicking the <span
class="cmti-10x-x-109">Footprint Editor </span>tool, we see the corresponding RC_pcb.net file
for RC circuit. This window is shown in Fig. <a
href="#x1-270107">4.7<!--tex4ht:ref: CvPcb-window --></a>. The main purpose of this window is to
let one choose the footprints for the various components in the circuit. Let us view the
footprint <span
class="cmtt-10x-x-109">C1 </span>for capacitor C1. Click on <span
class="cmtt-10x-x-109">C1 </span>from the right hand side of CvPcb
window. Click on <span
class="cmti-10x-x-109">View Selected Footprint </span>tool from the tool bar of CvPcb<a
id="dx1-27008"></a>
window. This will show the footprint corresponding to C1. This is illustrated in
Fig. <a
href="#x1-270118">4.8<!--tex4ht:ref: footprint-c1 --></a>. To know more about how to assign footprints<a
id="dx1-27009"></a> to components, see
Chapter <a
href="#x1-600007">7<!--tex4ht:ref: chap7 --></a>.
<!--l. 119--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-270107"></a> <img
src="figures/CvPCB-window.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.7: </span><span
class="content">CvPCB Window</span></div><!--tex4ht:label?: x1-270107 -->
<!--l. 124--><p class="noindent" ></div><hr class="endfigure">
<!--l. 126--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-270118"></a> <img
src="figures/footprint-c1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.8: </span><span
class="content">Footprint for C1</span></div><!--tex4ht:label?: x1-270118 -->
<!--l. 131--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">PCB Layout: Open the RC_pcb project available in <span
class="cmtt-10x-x-109">Examples</span>. Clicking on the
<span
class="cmti-10x-x-109">Layout Editor </span>tool will open <span
class="cmtt-10x-x-109">Pcbnew</span><a
id="dx1-27012"></a>, the layout editor used in eSim. This
shows the PCB design for RC circuit. In this window, one will create the
PCB. It involves laying tracks and vias, performing optimum routing of tracks,
creating one or more copper layers for PCB, etc. The PCB design for RC
circuit is shown in Fig. <a
href="#x1-270139">4.9<!--tex4ht:ref: pcb-RC --></a>. This is how the PCB will look like when one
actually prints it on a copper-clad board. It will be saved as a <span
class="cmtt-10x-x-109">.brd </span>file in the
same directory. Chapter <a
href="#x1-600007">7<!--tex4ht:ref: chap7 --></a> explains how to use the <span
class="cmti-10x-x-109">Layout Editor </span>to design a
PCB.
<!--l. 145--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-270139"></a><img
src="figures/pcb-rc.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.9: </span><span
class="content">PCB design for RC circuit</span></div><!--tex4ht:label?: x1-270139 -->
<!--l. 150--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Model Editor: eSim also gives an option to re-configure the model of a component. It
facilitates the user to change models of components such as diode, transistor, MOSFET,
etc. When one clicks on the <span
class="cmti-10x-x-109">Model Builder </span>tool, the window as shown in Fig. <a
href="#x1-2701410">4.10<!--tex4ht:ref: model-builder-blank --></a> will
appear.
<!--l. 160--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-2701410"></a> <img
src="figures/modeleditor.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.10: </span><span
class="content">Footprint for C1</span></div><!--tex4ht:label?: x1-2701410 -->
<!--l. 165--><p class="noindent" ></div><hr class="endfigure">
<!--l. 166--><p class="noindent" >To create a new model library <span
class="cmtt-10x-x-109">New </span>button is clicked which then opens the template
library folder. We can choose from the template library that can be edited, to create the
new library and the click on <span
class="cmtt-10x-x-109">Save </span>to save the edited model library. Also the existing
library can be edited usind <span
class="cmtt-10x-x-109">Edit </span>option. The user can also use their own library by
uploading it using <span
class="cmtt-10x-x-109">Upload </span>button.
<!--l. 169--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-2701511"></a> <img
src="figures/model.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.11: </span><span
class="content">Model Editor with Diode Model</span></div><!--tex4ht:label?: x1-2701511 -->
<a
id="dx1-27016"></a>
<!--l. 175--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Subcircuit: eSim has an option to build subcircuits. The subcircuits can again have
components having subcircuits and so on. This enables users to build commonly used
circuits as subcircuits and then use it across circuits. For example, one can build a 12
Volt power supply as a subcircuit and then use it as just a single component across
circuits without having the need to recreate it. Clicking on <span
class="cmti-10x-x-109">Subcircuit Builder</span>
tool will allow one to edit or create a subcircuit. To know how to make a
subcircuit, refer to Chapter <a
href="#x1-600007">7<!--tex4ht:ref: chap7 --></a>. Fig. <a
href="#x1-2701812">4.12<!--tex4ht:ref: lm555n-subcircuit --></a> shows the subcircuit of 555 timer IC.
<a
id="dx1-27017"></a>
<!--l. 189--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-2701812"></a> <img
src="figures/subcircuit.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.12: </span><span
class="content">Subcircuit o1f 555 timer IC</span></div><!--tex4ht:label?: x1-2701812 -->
<a
id="dx1-27019"></a>
<!--l. 195--><p class="noindent" ></div><hr class="endfigure">
</li></ul>
<!--l. 198--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-280004.1.2"></a>Menubar</h5>
<ul class="itemize1">
<li class="itemize">New Project: New projects are created in the workspace. When selected this menu,
a new window opens up with <span
class="cmtt-10x-x-109">Enter Project name </span>field. Type the name of the
new project here. Click on OK. A folder will be created in the specified directory.
The name of this folder will be the same as that of the project created.
</li>
<li class="itemize">Open Project: This opens the file dialog of defalut workspace where the projects
are stored. The project can be selected which is then added in the project explorer.
</li>
<li class="itemize">Exit: This button closes the project window and exits.
</li>
<li class="itemize">Help:</li></ul>
<!--l. 213--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-290004.1.2"></a>Project Explorer</h5>
<!--l. 214--><p class="noindent" >Project explorer has tree of all the project previously added in it. On right clicking
the project we can simply remove or refresh the project in the explorer. Also on
right clicking the project file can be opened in the text editor which can then be
edited.
<!--l. 217--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-300004.1.2"></a>Dockarea</h5>
<!--l. 219--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-310004.1.2"></a>Console Area</h5>
<!--l. 220--><p class="noindent" >Console area provides with the errors and active commands running.
<!--l. 8--><p class="indent" >
<h2 class="chapterHead"><span class="titlemark">Chapter 5</span><br /><a
id="x1-320005"></a>Schematic Creation</h2> The first step in the design of an electronic system is the
design of its circuit. This circuit is usually created using a <span
class="cmtt-10x-x-109">Schematic Editor</span><a
id="dx1-32001"></a> and is called a
<span
class="cmtt-10x-x-109">Schematic</span>. <a
id="dx1-32002"></a>Oscad uses <span
class="cmtt-10x-x-109">EEschema</span> <a
id="dx1-32003"></a>as its schematic editor. EEschema is the schematic editor of
KiCad. <a
id="dx1-32004"></a>It is a powerful schematic editor software. It allows the creation and modification of
components and symbol libraries and supports multiple hierarchical layers of printed circuit
design.
<h3 class="sectionHead"><span class="titlemark">5.1 </span> <a
id="x1-330005.1"></a>Familiarising the Schematic Editor interface</h3>
<!--l. 22--><p class="noindent" >Fig. <a
href="#x1-330011">5.1<!--tex4ht:ref: eesch1 --></a> shows the schematic editor and the various menu and toolbars. We will explain them
briefly in this section. <hr class="figure"><div class="figure"
>
<a
id="x1-330011"></a>
<div class="center"
>
<!--l. 25--><p class="noindent" >
<!--l. 26--><p class="noindent" ><img
src="figures/eeschema1_corctd.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.1: </span><span
class="content">Schematic editor with the menu bar and toolbars marked</span></div><!--tex4ht:label?: x1-330011 -->
</div>
<!--l. 30--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">5.1.1 </span> <a
id="x1-340005.1.1"></a>Top menu bar</h4>
<!--l. 35--><p class="noindent" >The top menu bar will be available at the top left corner. Some of the important menu
options in the top menu bar are:
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">File - The file menu items are given below:
<dl class="compactenum"><dt class="compactenum">
(a) </dt><dd
class="compactenum">New - Clear current schematic and start a new one
</dd><dt class="compactenum">
(b) </dt><dd
class="compactenum">Open - Open a schematic
</dd><dt class="compactenum">
(c) </dt><dd
class="compactenum">Open Recent - A list of recently opened files for loading
</dd><dt class="compactenum">
(d) </dt><dd
class="compactenum">Save Whole Schematic project - Save current sheet and all its hierarchy.
</dd><dt class="compactenum">
(e) </dt><dd
class="compactenum">Save Current Sheet Only - Save current sheet, but not others in a hierarchy.
</dd><dt class="compactenum">
(f) </dt><dd
class="compactenum">Save Current sheet as - Save current sheet with a new name.
</dd><dt class="compactenum">
(g) </dt><dd
class="compactenum">Print - Access to print menu (See Fig. <a
href="#x1-340112">5.2<!--tex4ht:ref: print --></a>).
</dd><dt class="compactenum">
(h) </dt><dd
class="compactenum">Plot - Plot the schematic in Postscript, HPGL, SVF or DXF format
</dd><dt class="compactenum">
(i) </dt><dd
class="compactenum">Quit - Quit the schematic editor.</dd></dl>
<!--l. 53--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-340112"></a>
<div class="center"
>
<!--l. 54--><p class="noindent" >
<!--l. 55--><p class="noindent" ><img
src="figures/print.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.2: </span><span
class="content">Print options</span></div><!--tex4ht:label?: x1-340112 -->
</div>
<!--l. 59--><p class="noindent" ></div><hr class="endfigure">
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Place - The place menu has shortcuts for placing various items like components, wire
and junction, on to the schematic editor window. See Sec. <a
href="#x1-380005.1.5">5.1.5<!--tex4ht:ref: short --></a> to know more about
various shortcut keys (hotkeys).
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Preferences - The preferences menu has the following options:
<dl class="compactenum"><dt class="compactenum">
(a) </dt><dd
class="compactenum">Library - Select libraries and library paths
</dd><dt class="compactenum">
(b) </dt><dd
class="compactenum">Colors - Select colors for various items.
</dd><dt class="compactenum">
(c) </dt><dd
class="compactenum">Options - Display schematic editor options (Units, Grid size).
</dd><dt class="compactenum">
(d) </dt><dd
class="compactenum">Language - Shows the current list of translations. Use default.
</dd><dt class="compactenum">
(e) </dt><dd
class="compactenum">Hotkeys - Access to the hot keys menu. See Sec. <a
href="#x1-380005.1.5">5.1.5<!--tex4ht:ref: short --></a> about hotkeys.
</dd><dt class="compactenum">
(f) </dt><dd
class="compactenum">Read preferences - Read configuration file.
</dd><dt class="compactenum">
(g) </dt><dd
class="compactenum">Save preferences - Save configuration file.</dd></dl>
</dd></dl>
<!--l. 79--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">5.1.2 </span> <a
id="x1-350005.1.2"></a>Top toolbar</h4>
<a
id="dx1-35001"></a>
<a
id="dx1-35002"></a>
<!--l. 80--><p class="noindent" >Some of the important tools in the top toolbar are discussed below. They are marked in
Fig. <a
href="#x1-350033">5.3<!--tex4ht:ref: eeschem2 --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-350033"></a>
<!--l. 84--><p class="noindent" ><img
src="figures/eeschema2_mod.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.3: </span><span
class="content">Toolbar on top with important tools marked</span></div><!--tex4ht:label?: x1-350033 -->
<!--l. 87--><p class="indent" > </div><hr class="endfigure">
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Save - Save the current schematic
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Library Editor - Create or edit components.
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Library Browser - Browse through the various component libraries available
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">Navigate schematic hierarchy - Navigate among the root and sub-sheets in the
hierarchy
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">Print - Print the schematic
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">Generate netlist - Generate a netlist for PCB design or for simulation.
</dd><dt class="compactenum">
7. </dt><dd
class="compactenum">Annotate - Annotate the schematic
</dd><dt class="compactenum">
8. </dt><dd
class="compactenum">Check ERC - Do Electric Rules Check for the schematic
</dd><dt class="compactenum">
9. </dt><dd
class="compactenum">Create BOM - Create a Bill of Materials of the schematic</dd></dl>
<h4 class="subsectionHead"><span class="titlemark">5.1.3 </span> <a
id="x1-360005.1.3"></a>Toolbar on the right</h4>
<a
id="dx1-36001"></a>
<a
id="dx1-36002"></a>
<!--l. 104--><p class="noindent" >The toolbar on the right side of the schematic editor window has many important tools. Some
of them are marked in Fig. <a
href="#x1-360034">5.4<!--tex4ht:ref: eeschem3 --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-360034"></a>
<!--l. 108--><p class="noindent" ><img
src="figures/eeschema3_mod.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.4: </span><span
class="content">Toolbar on right with important tools marked</span></div><!--tex4ht:label?: x1-360034 -->
<!--l. 111--><p class="indent" > </div><hr class="endfigure">
<!--l. 112--><p class="indent" > Let us now look at each of these tools and their uses.
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Place a component - Load a component to the schematic. See Sec. <a
href="#x1-400005.2.1">5.2.1<!--tex4ht:ref: selplace --></a> for more
details.
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Place a power port - Load a power port (Vcc, ground) to the schematic
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Place wire - Draw wires to connect components in schematic
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">Place bus - Place a bus on the schematic
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">Place a no connect - Place a no connect flag, particularly useful in ICs
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">Place a local label - Place a label or node name which is local to the schematic
</dd><dt class="compactenum">
7. </dt><dd
class="compactenum">Place a global label - Place a global label (these are connected across all schematic
diagrams in the hierarchy)
</dd><dt class="compactenum">
8. </dt><dd
class="compactenum">Create a hierarchical sheet - Create a sub-sheet within the root sheet in the
hierarchy. Hierarchical schematics are a good solution for big projects
</dd><dt class="compactenum">
9. </dt><dd
class="compactenum">Place a text or comment - Place a text or comment in the schematic</dd></dl>
<h4 class="subsectionHead"><span class="titlemark">5.1.4 </span> <a
id="x1-370005.1.4"></a>Toolbar on the left</h4>
<a
id="dx1-37001"></a>
<a
id="dx1-37002"></a>
<!--l. 126--><p class="noindent" >Some of the important tools in the toolbar on the left are discussed below. They are marked
in Fig. <a
href="#x1-370035">5.5<!--tex4ht:ref: eeschem4 --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-370035"></a>
<!--l. 130--><p class="noindent" ><img
src="figures/eeschema4_mod.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.5: </span><span
class="content">Toolbar on left with important tools marked</span></div><!--tex4ht:label?: x1-370035 -->
<!--l. 133--><p class="indent" > </div><hr class="endfigure">
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Show/Hide grid - Show or Hide the grid in the schematic editor. Pressing the tool
again hides (shows) the grid if it was shown (hidden) earlier.
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Show hidden pins - Show hidden pins of certain components, for example, power
pins of certain ICs.</dd></dl>
<h4 class="subsectionHead"><span class="titlemark">5.1.5 </span> <a
id="x1-380005.1.5"></a>Hotkeys</h4>
<a
id="dx1-38001"></a>
<!--l. 142--><p class="noindent" >A set of keyboard keys are associated with various operations in the schematic editor. These
keys save time and make it easy to switch from one operation to another. The list of hotkeys
can be viewed by going to Preferences in the top menu bar. Choose <span
class="cmti-10x-x-109">Hotkeys </span>and
select <span
class="cmti-10x-x-109">List current keys</span>. The hotkeys can also be edited by selecting the option
<span
class="cmti-10x-x-109">Edit Hotkeys</span>. Some frequently used hotkeys, along with their functions, are given
below:
<ul>
<li class="compactitem">F1 - Zoom in
</li>
<li class="compactitem">F2 - Zoom out
</li>
<li class="compactitem">Ctrl + Z - Undo
</li>
<li class="compactitem">Delete - Delete item
</li>
<li class="compactitem">M - Move item
</li>
<li class="compactitem">C - Copy item
</li>
<li class="compactitem">A - Add/place component
</li>
<li class="compactitem">P - Place power component
</li>
<li class="compactitem">R - Rotate item
</li>
<li class="compactitem">X - Mirror component about X axis
</li>
<li class="compactitem">Y - Mirror component about Y axis
</li>
<li class="compactitem">E - Edit schematic component
</li>
<li class="compactitem">W - Place wire
</li>
<li class="compactitem">T - Add text
</li>
<li class="compactitem">S - Add sheet</li></ul>
<!--l. 166--><p class="noindent" ><span
class="cmti-10x-x-109">Note: Both lower and upper-case keys will work as hotkeys</span>.
<!--l. 168--><p class="noindent" >
<h3 class="sectionHead"><span class="titlemark">5.2 </span> <a
id="x1-390005.2"></a>Schematic creation for simulation</h3>
<a
id="dx1-39001"></a>
<!--l. 170--><p class="noindent" >There are certain differences between the schematic created for simulation and that created
for PCB design. We need certain components like plots and current sources. for simulation
whereas these are not needed for PCB design. For PCB design, we would require
connectors (e.g. DB15 and 2 pin connector) for taking signals in and out of the
PCB whereas these have no meaning in simulation. This section covers schematic
creation for simulation. Refer to Chapter <a
href="#x1-600007">7<!--tex4ht:ref: chap7 --></a> to know how to create schematic for PCB
design.
<!--l. 177--><p class="indent" > The first step in the creation of circuit schematic is the selection and placement of
required components. Let us see this using an example. Let us create the circuit schematic of
an RC filter given in Fig. <a
href="#x1-390026">5.6<!--tex4ht:ref: schemRC --></a> and do a transient simulation. <hr class="figure"><div class="figure"
>
<a
id="x1-390026"></a>
<!--l. 183--><p class="noindent" ><img
src="figures/componentlibrary.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.6: </span><span
class="content">RC circuit</span></div><!--tex4ht:label?: x1-390026 -->
<!--l. 186--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">5.2.1 </span> <a
id="x1-400005.2.1"></a>Selection and placement of components</h4>
<a
id="dx1-40001"></a>
<!--l. 191--><p class="noindent" >We would need a resistor, a capacitor, a voltage source, ground terminal and some
plot components. To place a resistor on the schematic editor window, select the
<span
class="cmti-10x-x-109">Placea component </span>tool from the toolbar on the right side and click anywhere on
the schematic editor. This opens up the component selection window. (The above
action can also be performed by pressing the key A.) Type <span
class="cmtt-10x-x-109">R </span>in the field <span
class="cmti-10x-x-109">Name </span>of
the <span
class="cmtt-10x-x-109">component selection </span>window as shown in Fig. <a
href="#x1-400027">5.7<!--tex4ht:ref: res --></a>. Click on OK. A resistor
will be tied to the cursor. Place the resistor on the schematic editor by a single
click.
<!--l. 200--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-400027"></a>
<!--l. 202--><p class="noindent" ><img
src="figures/sine.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.7: </span><span
class="content">Placing a resistor using the Place a Component tool</span></div><!--tex4ht:label?: x1-400027 -->
<!--l. 205--><p class="indent" > </div><hr class="endfigure">
<!--l. 206--><p class="indent" > To place the next component, i.e., capacitor, click again on the schematic editor. Type <span
class="cmtt-10x-x-109">C</span>
in the Name field of component selection window. Click on OK. Place the capacitor
on the schematic editor by a single click. Let us now place a sinusoidal voltage
source. This is required for performing transient analysis. To place it, click again
on the schematic editor. On the component selection window, click on <span
class="cmti-10x-x-109">List all</span>.
Choose the library <span
class="cmti-10x-x-109">sourcesSpice </span>by double clicking on it. Select the component
<span
class="cmtt-10x-x-109">SINE </span>and click on OK. Place the sine source on the schematic editor by a single
click.
<!--l. 216--><p class="indent" > Place the component by clicking on the schematic editor. Similarly place a ground
terminal <span
class="cmtt-10x-x-109">gnd </span>from the library <span
class="cmti-10x-x-109">power</span>. It can also be placed using the <span
class="cmti-10x-x-109">Place a power port </span>tool
from the toolbar on the right. Click anywhere on the editor after selecting place a power port
tool. Click <span
class="cmti-10x-x-109">List all </span>and choose <span
class="cmtt-10x-x-109">gnd</span>. Once all the components are placed, the schematic editor
would look like the Fig. <a
href="#x1-400038">5.8<!--tex4ht:ref: afterplace --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-400038"></a>
<!--l. 225--><p class="noindent" ><img
src="figures/afterplace.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.8: </span><span
class="content">All RC circuit components placed</span></div><!--tex4ht:label?: x1-400038 -->
<!--l. 228--><p class="indent" > </div><hr class="endfigure">
<!--l. 229--><p class="indent" > Let us rotate the resistor to complete the circuit as shown in Fig. <a
href="#x1-390026">5.6<!--tex4ht:ref: schemRC --></a>. To rotate the
resistor, place the cursor on the resistor and press the key <span
class="cmtt-10x-x-109">R</span>. Note that if the cursor is placed
above the letter <span
class="cmtt-10x-x-109">R </span>(not <span
class="cmtt-10x-x-109">R?</span>) on the resistor, it asks to clarify selection. Choose the option
<span
class="cmti-10x-x-109">Component R</span>. This can be avoided by placing the cursor slightly away from the letter R as
shown in Fig. <a
href="#x1-400059">5.9<!--tex4ht:ref: rotate --></a>. This applies to all components.<a
id="dx1-40004"></a> <hr class="figure"><div class="figure"
>
<a
id="x1-400059"></a>
<!--l. 238--><p class="noindent" ><img
src="figures/rotate.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.9: </span><span
class="content">Placing the cursor (cross mark) slightly away from the letter R</span></div><!--tex4ht:label?: x1-400059 -->
<!--l. 241--><p class="indent" > </div><hr class="endfigure">
<!--l. 242--><p class="indent" > If one wants to move a component, place the cursor on top of the component and press the
key <span
class="cmtt-10x-x-109">M</span>. The component will be tied to the cursor and can be moved in any direction.
<a
id="dx1-40006"></a>
<h4 class="subsectionHead"><span class="titlemark">5.2.2 </span> <a
id="x1-410005.2.2"></a>Wiring the circuit</h4>
<a
id="dx1-41001"></a>
<!--l. 248--><p class="noindent" >The next step is to wire the connections. Let us connect the resistor to the capacitor.
To do so, point the cursor to the terminal of resistor to be connected and press
the key <span
class="cmtt-10x-x-109">W</span>. It has now changed to the wiring mode. Move the cursor towards the
terminal of the capacitor and click on it. A wire is formed as shown in Fig. <a
href="#x1-41002r1">5.10a<!--tex4ht:ref: wire1 --></a>.
<hr class="figure"><div class="figure"
>
<a
id="x1-4100510"></a>
<a
id="x1-41002r1"></a>
<!--l. 258--><p class="noindent" > <img
src="figures/wire1.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Initial</span>
<span
class="cmr-9">stages</span> <a
id="x1-41003r2"></a> <img
src="figures/wirefin.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Wiring</span>
<span
class="cmr-9">done</span> <a
id="x1-41004r3"></a> <img
src="figures/schemfin.png" alt="PIC"
>
<span
class="cmr-9">(c)</span>
<span
class="cmr-9">Final</span>
<span
class="cmr-9">schematic</span>
<span
class="cmr-9">with</span>
<span
class="cmr-9">PWR</span><span
class="cmr-9">_FLAG</span>
<br /> <div class="caption"
><span class="id">Figure 5.10: </span><span
class="content">Various stages of wiring</span></div><!--tex4ht:label?: x1-4100510 -->
<!--l. 266--><p class="indent" > </div><hr class="endfigure">
<!--l. 267--><p class="indent" > Similarly connect the wires between all terminals and the final schematic would look like
Fig. <a
href="#x1-41003r2">5.10b<!--tex4ht:ref: wirefin --></a>.
<h4 class="subsectionHead"><span class="titlemark">5.2.3 </span> <a
id="x1-420005.2.3"></a>Assigning values to components</h4>
<a
id="dx1-42001"></a>
<!--l. 271--><p class="noindent" >We need to assign values to the components in our circuit i.e., resistor and capacitor. Note
that the sine voltage source has been placed for simulation. The specifications of sine source
will be given during simulation. To assign value to the resistor, place the cursor above the
letter <span
class="cmtt-10x-x-109">R </span>(not <span
class="cmtt-10x-x-109">R?</span>) and press the key <span
class="cmtt-10x-x-109">E</span>. Choose <span
class="cmti-10x-x-109">Field value</span>. Type <span
class="cmtt-10x-x-109">1k </span>in the <span
class="cmti-10x-x-109">Edit value field </span>box
as shown in Fig. <a
href="#x1-4200211">5.11<!--tex4ht:ref: field --></a>. 1k means 1<span
class="cmmi-10x-x-109">k</span>Ω. Similarly give the value <span
class="cmtt-10x-x-109">1u </span>for the capacitor. 1u means
1<span
class="cmmi-10x-x-109">μF</span>.
<!--l. 281--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-4200211"></a>
<!--l. 283--><p class="noindent" ><img
src="figures/field.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.11: </span><span
class="content">Editing value of resistor</span></div><!--tex4ht:label?: x1-4200211 -->
<!--l. 286--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">5.2.4 </span> <a
id="x1-430005.2.4"></a>Annotation and ERC</h4>
<a
id="dx1-43001"></a>
<a
id="dx1-43002"></a>
<a
id="dx1-43003"></a>
<a
id="dx1-43004"></a>
<!--l. 290--><p class="noindent" >The next step is to annotate the schematic. Annotation gives unique references to the
components. To annotate the schematic, click on <span
class="cmti-10x-x-109">Annotate schematic </span>tool from the
top toolbar. Click on annotation, then click on OK and finally click on close as
shown in Fig. <a
href="#x1-4300813">5.13<!--tex4ht:ref: anno --></a>. The schematic is now annotated. The question marks next to
component references have been replaced by unique numbers. If there are more than
one instance of a component (say resistor), the annotation will be done as R1, R2,
etc.
<!--l. 299--><p class="indent" > Let us now do <span
class="cmtt-10x-x-109">ERC </span>or <span
class="cmtt-10x-x-109">Electric Rules Check</span>. To do so, click on <span
class="cmti-10x-x-109">Perform electric rules</span>
<span
class="cmti-10x-x-109">check </span>tool from the top toolbar. Click on <span
class="cmti-10x-x-109">Test Erc </span>button. The error as shown in Fig. <a
href="#x1-4300712">5.12<!--tex4ht:ref: erc --></a>
may be displayed. Click on close in the test erc<a
id="dx1-43005"></a> window. <a
id="dx1-43006"></a><hr class="figure"><div class="figure"
>
<a
id="x1-4300712"></a>
<!--l. 306--><p class="noindent" ><img
src="figures/erc1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.12: </span><span
class="content">ERC error</span></div><!--tex4ht:label?: x1-4300712 -->
<!--l. 309--><p class="indent" > </div><hr class="endfigure">
<!--l. 310--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-4300813"></a>
<!--l. 312--><p class="noindent" ><img
src="figures/anno.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.13: </span><span
class="content">Steps in annotating a schematic: 1. First click on Annotation then 2. Click
on Ok then 3. Click on close</span></div><!--tex4ht:label?: x1-4300813 -->
<!--l. 315--><p class="indent" > </div><hr class="endfigure">
<!--l. 316--><p class="indent" > There will be a green arrow pointing to the source of error in the schematic. Here it points
to the ground terminal. This is shown in Fig. <a
href="#x1-4300914">5.14<!--tex4ht:ref: ercgnd --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-4300914"></a>
<!--l. 321--><p class="noindent" ><img
src="figures/ercgnd.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.14: </span><span
class="content">Green arrow pointing to Ground terminal indicating an ERC error</span></div><!--tex4ht:label?: x1-4300914 -->
<!--l. 324--><p class="indent" > </div><hr class="endfigure">
<!--l. 325--><p class="indent" > To correct this error, place a <span
class="cmtt-10x-x-109">PWR</span><span
class="cmtt-10x-x-109">_FLAG </span>from the EEschema library <span
class="cmti-10x-x-109">power</span>. <a
id="dx1-43010"></a>Connect the
power flag to the ground terminal as shown in Fig. <a
href="#x1-41004r3">5.10c<!--tex4ht:ref: schemfin --></a>. More information about
PWR_FLAG is given in Sec. <span
class="cmbx-10x-x-109">??</span>. One needs to place <span
class="cmtt-10x-x-109">PWR</span><span
class="cmtt-10x-x-109">_FLAG </span>wherever the error shown in
Fig. <a
href="#x1-4300712">5.12<!--tex4ht:ref: erc --></a> is obtained. Repeat the ERC. Now there are no errors. With this we have created
the schematic for simulation.
<h4 class="subsectionHead"><span class="titlemark">5.2.5 </span> <a
id="x1-440005.2.5"></a>Netlist generation</h4>
<a
id="dx1-44001"></a>
<!--l. 335--><p class="noindent" >To simulate the circuit that has been created in the previous section, we need to generate its
netlist. <span
class="cmtt-10x-x-109">Netlist </span>is a list of components in the schematic along with their connection
information. <a
id="dx1-44002"></a>To do so, click on the <span
class="cmti-10x-x-109">Generate netlist </span>tool from the top toolbar. Click on spice
from the window that opens up. Uncheck the option <span
class="cmtt-10x-x-109">Default Format</span>. Then click on <span
class="cmti-10x-x-109">Netlist</span>.
This is shown in Fig. <a
href="#x1-4400315">5.15<!--tex4ht:ref: chap5net --></a>. Save the netlist. This will be a <span
class="cmtt-10x-x-109">.cir </span>file. Do not change the
directory while saving. <hr class="figure"><div class="figure"
>
<a
id="x1-4400315"></a>
<!--l. 346--><p class="noindent" ><img
src="figures/netlist.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.15: </span><span
class="content">Steps in generating a Netlist for simulation: 1. Click on Spice then 2.
Check the option <span
class="cmtt-10x-x-109">Defalut Format </span>then 3. Click on Netlist </span></div><!--tex4ht:label?: x1-4400315 -->
<!--l. 349--><p class="indent" > </div><hr class="endfigure">
<!--l. 350--><p class="indent" > Now the netlist is ready to be simulated. Chapter <a
href="#x1-450006">6<!--tex4ht:ref: chap6 --></a> explains how to perform simulations.
Refer to <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span> or <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span> to know more about EEschema.
<h2 class="chapterHead"><span class="titlemark">Chapter 6</span><br /><a
id="x1-450006"></a>Simulation</h2> Circuit simulation <a
id="dx1-45001"></a>uses mathematical models to replicate the
behaviour of an actual device or circuit. Simulation software allows to model circuit
operations. Simulating a circuit’s behaviour before actually building it can greatly improve
design efficiency. eSim uses <span
class="cmtt-10x-x-109">Ngspice</span><a
id="dx1-45002"></a> for analog, digital and mixed-level/mixed-signal circuit
simulation. The various steps involved in simulating a circuit schematic in eSim are given
below:
<ul class="itemize1">
<li class="itemize">Kicad to Ngspice Conversion: The schematic file generated in Kicad i.e. <span
class="cmtt-10x-x-109">.cir </span>file is to
be converted into a ngspice compatible file before simulation. The process of conversion
involves following steps-
<dl class="enumerate"><dt class="enumerate">
1. </dt><dd
class="enumerate">Analysis insertion - This tool is used to insert the type of analysis to the
netlist. It is done by the <span
class="cmti-10x-x-109">Analysis Inserter </span>tool in the eSim toolbar. <a
id="dx1-45004"></a>
</dd><dt class="enumerate">
2. </dt><dd
class="enumerate">Source Details <a
id="dx1-45006"></a>- The netlist created in the <span
class="cmti-10x-x-109">Schematic Editor </span>is converted to
Ngspice format and analysis commands is appended to it. It is done by the
<span
class="cmti-10x-x-109">Netlist Converter </span>tool in the eSim toolbar. <a
id="dx1-45007"></a>
</dd><dt class="enumerate">
3. </dt><dd
class="enumerate">Ngspice Modelling <a
id="dx1-45009"></a>- Ngspice simulation of the netlist is performed. It is done
by clicking on the <span
class="cmti-10x-x-109">Ngspice </span>tool in the eSim toolbar.
</dd><dt class="enumerate">
4. </dt><dd
class="enumerate">Model Library - Model library adds the component library of the components
like Diode, JFET, MOS, IGBT. These library file contains the parameters
and the values of the components.
</dd><dt class="enumerate">
5. </dt><dd
class="enumerate">Sub-Circuit - A sub circuiting can be done using this tool. This involves
adding the sub circuit used in the main circuit. This adds all the project files
of the sub circuit.</dd></dl>
</li>
<li class="itemize">Simulation: The output file produced is used for simulation to plot the output in the
Ngspice.</li></ul>
<!--l. 34--><p class="noindent" >In the following sections, we shall describe each of the above steps.
<h3 class="sectionHead"><span class="titlemark">6.1 </span> <a
id="x1-460006.1"></a>Analysis Inserter</h3>
<a
id="dx1-46001"></a>
<!--l. 38--><p class="noindent" >In order to simulate a circuit, the user must define the type of analysis to be done on the
circuit. The types of analysis <a
id="dx1-46002"></a>include <span
class="cmtt-10x-x-109">Operating point analysis</span>, <span
class="cmtt-10x-x-109">DC analysis</span>,
<span
class="cmtt-10x-x-109">AC analysis</span>, <span
class="cmtt-10x-x-109">transient analysis</span>, etc. The user should also specify the options
corresponding to each analysis. This is facilitated by the <span
class="cmti-10x-x-109">Analysis Inserter </span>tool in
eSim.
<!--l. 46--><p class="indent" > Analysis Inserter generates the commands for Ngspice. When one clicks on <span
class="cmti-10x-x-109">Kicad to</span>
<span
class="cmti-10x-x-109">Ngspice </span>from the eSim toolbar, one gets the Analysis Inserter GUI as shown in Fig. <a
href="#x1-460031">6.1<!--tex4ht:ref: 1 --></a>. The
various tabs in this GUI correspond to the various types of analysis. The user can enter
the details, needed to perform simulation, in the corresponding fields under these
tabs.
<!--l. 53--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-460031"></a>
<!--l. 55--><p class="noindent" ><img
src="figures/analysis.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.1: </span><span
class="content">Analysis Insertor GUI</span></div><!--tex4ht:label?: x1-460031 -->
<!--l. 58--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">6.1.1 </span> <a
id="x1-470006.1.1"></a>Types of analysis</h4>
<a
id="dx1-47001"></a>
<!--l. 64--><p class="noindent" >eSim supports three types of analyses: <a
id="x1-47002r1"></a>1. DC Analysis (Operating Point and DC Sweep)
<a
id="dx1-47003"></a><a
id="x1-47004r2"></a>2. AC Small-signal Analysis <a
id="dx1-47005"></a><a
id="x1-47006r3"></a>3. Transient Analysis. <a
id="dx1-47007"></a>
Other analysis in the <span
class="cmti-10x-x-109">Analysis Inserter </span>are currently under progress. The different types of
analyses supported in eSim are explained below <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>.
<!--l. 74--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-480006.1.1"></a>DC analysis</h5>
<a
id="dx1-48001"></a>
<!--l. 74--><p class="noindent" >The <span
class="cmtt-10x-x-109">DC analysis </span>determines the dc operating point of the circuit with inductors shorted and
capacitors opened. The DC analysis options are specified on the <span
class="cmti-10x-x-109">.dc</span> <a
id="dx1-48002"></a>and <span
class="cmti-10x-x-109">.op</span><a
id="dx1-48003"></a> control
lines.
<!--l. 79--><p class="indent" > There is assumed to be no time dependence on any of the sources within the system
description. The simulator algorithm subdivides the circuit into those portions which require
the <span
class="cmtt-10x-x-109">analog simulator algorithm </span>and those which require the <span
class="cmtt-10x-x-109">event-driven algorithm</span>.
Each subsystem block is then iterated to solution, with the interfaces between analog nodes
and event-driven nodes iterated for consistency across the entire system. Once stable values
are obtained for all nodes in the system, the analysis halts and the results could be displayed
or printed out.
<!--l. 89--><p class="indent" > A <span
class="cmtt-10x-x-109">DC analysis </span>is automatically performed prior to a <span
class="cmtt-10x-x-109">transient analysis </span>to determine
the transient initial conditions, and prior to an <span
class="cmtt-10x-x-109">ac small-signal analysis </span>to determine the
linearised, small-signal models for nonlinear devices. The <span
class="cmtt-10x-x-109">DC analysis </span>can also be used to
generate dc transfer curves: a specified independent voltage or current source is stepped over a
user-specified range and the dc output variables are stored for each sequential source
value.
<!--l. 97--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-490006.1.1"></a>AC small-signal analysis</h5>
<a
id="dx1-49001"></a>
<!--l. 98--><p class="noindent" ><span
class="cmtt-10x-x-109">AC analysis </span>is limited to analog nodes. It represents the small signal, sinusoidal
solution of the analog system described at a particular frequency or set of frequencies.
This analysis is similar to the <span
class="cmtt-10x-x-109">DC analysis </span>in that it represents the steady-state
behaviour of the described system with a single input node at a given set of stimulus
frequencies.
<!--l. 105--><p class="indent" > The program first computes the dc operating point of the circuit and determines
linearised, small-signal models for all of the nonlinear devices in the circuit. The resultant
linear circuit is then analyzed over a user-specified range of frequencies. The desired output
of an ac small-signal analysis is usually a transfer function (voltage gain, trans
impedance, etc.). If the circuit has only one ac input, it is convenient to set that input to
unity and zero phase, so that output variables have the same value as the transfer
function.
<!--l. 114--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-500006.1.1"></a>Transient analysis</h5>
<a
id="dx1-50001"></a>
<!--l. 115--><p class="noindent" ><span
class="cmtt-10x-x-109">Transient analysis </span>is an extension of <span
class="cmtt-10x-x-109">DC analysis </span>to the time domain. A <span
class="cmtt-10x-x-109">transient</span>
<span
class="cmtt-10x-x-109">analysis </span>begins by obtaining a DC solution to provide a point of departure for simulating
time-varying behaviour. Once the DC solution is obtained, the time-dependent aspects of the
system are reintroduced and the simulator algorithms incrementally solve for the time varying
behaviour of the entire system. Inconsistencies in node values are resolved by the simulation
algorithms such that the time-dependent waveforms created by the analysis are consistent
across the entire simulated time interval.
<!--l. 125--><p class="indent" > Resulting time-varying descriptions of node behaviour for the specified time interval are
accessible. All sources which are not time dependent (for example, power supplies) are
set to their dc value. The transient time interval is specified on a <span
class="cmti-10x-x-109">.tran </span>control
line.
<!--l. 131--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">6.1.2 </span> <a
id="x1-510006.1.2"></a>DC analysis inserter</h4>
<!--l. 132--><p class="noindent" >By default <span
class="cmtt-10x-x-109">DC analysis </span>option appears when one clicks on <span
class="cmti-10x-x-109">Analysis Inserter</span>. Here we need
to give the details of input <span
class="cmti-10x-x-109">source name</span>, <span
class="cmti-10x-x-109">start value </span>of input, <span
class="cmti-10x-x-109">increment </span>and <span
class="cmti-10x-x-109">stop </span>value. Once
this is done, click on <span
class="cmti-10x-x-109">Add Simulation Data</span>.
<!--l. 137--><p class="indent" > Fig. <a
href="#x1-510032">6.2<!--tex4ht:ref: 2 --></a> gives an example of <span
class="cmtt-10x-x-109">DC analysis </span>inserter. In this example, <span
class="cmtt-10x-x-109">v1 </span>is the input
voltage source which <span
class="cmti-10x-x-109">starts </span>at <span
class="cmtt-10x-x-109">0 Volt</span>, <span
class="cmti-10x-x-109">increments </span>by <span
class="cmtt-10x-x-109">1 Volt </span>and <span
class="cmti-10x-x-109">stops </span>at <span
class="cmtt-10x-x-109">10 Volt</span>. On
clicking <span
class="cmti-10x-x-109">Add Simulation Data</span>, the analysis command is generated and is of the form:
<br
class="newline" /><span
class="cmtt-10x-x-109">.dc</span><a
id="dx1-51001"></a> <span
class="cmtt-10x-x-109">sourcename vstart vstop vincr </span><br
class="newline" />The <span
class="cmtt-10x-x-109">.dc </span>line defines the dc transfer curve source and sweep limits (with capacitors open and
inductors shorted). <span
class="cmtt-10x-x-109">srcnam </span>is the name of an independent voltage or current source. <span
class="cmtt-10x-x-109">vstart</span>,
<span
class="cmtt-10x-x-109">vstop</span>, and <span
class="cmtt-10x-x-109">vincr </span>are the starting, final, and incrementing values respectively, of the
source.
<!--l. 151--><p class="indent" > When we check the option <span
class="cmti-10x-x-109">Operating Point analysis</span><a
id="dx1-51002"></a> on the DC analysis window, <span
class="cmtt-10x-x-109">.op </span>gets
appended to the analysis statement. <hr class="figure"><div class="figure"
>
<a
id="x1-510032"></a>
<!--l. 156--><p class="noindent" ><img
src="figures/dc1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.2: </span><span
class="content">DC Analysis GUI</span></div><!--tex4ht:label?: x1-510032 -->
<!--l. 159--><p class="indent" > </div><hr class="endfigure">
<!--l. 160--><p class="indent" > The inclusion of the line <span
class="cmtt-10x-x-109">.op </span>in the analysis file directs Ngspice to determine the dc
operating point of the circuit with inductors shorted and capacitors opened.
<h4 class="subsectionHead"><span class="titlemark">6.1.3 </span> <a
id="x1-520006.1.3"></a>AC analysis inserter</h4>
<a
id="dx1-52001"></a>
<!--l. 165--><p class="noindent" >When one clicks on the option <span
class="cmti-10x-x-109">AC </span>in the <span
class="cmti-10x-x-109">Analysis Inserter </span>GUI, the window given in
Fig. <a
href="#x1-520023">6.3<!--tex4ht:ref: 4 --></a> appears. <hr class="figure"><div class="figure"
>
<a
id="x1-520023"></a>
<!--l. 169--><p class="noindent" ><img
src="figures/ac1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.3: </span><span
class="content">AC Analysi GUI</span></div><!--tex4ht:label?: x1-520023 -->
<!--l. 172--><p class="indent" > </div><hr class="endfigure">
<!--l. 173--><p class="indent" > Here one needs to enter the details of <span
class="cmti-10x-x-109">scale</span>, <span
class="cmti-10x-x-109">start frequency</span>, <span
class="cmti-10x-x-109">stop frequency </span>and <span
class="cmti-10x-x-109">Number of</span>
<span
class="cmti-10x-x-109">points</span>.
<!--l. 176--><p class="indent" > After entering these values, click on <span
class="cmti-10x-x-109">Add Simulation Data</span>. The analysis statement is
generated. This is in one of the three forms listed below, depending on the type of <span
class="cmti-10x-x-109">scale </span>that
one chooses. The types of <span
class="cmti-10x-x-109">scale </span>available are <span
class="cmti-10x-x-109">dec</span>, <span
class="cmti-10x-x-109">oct</span>, and <span
class="cmti-10x-x-109">lin</span>, the usage of which is explained
below: <br
class="newline" /><span
class="cmtt-10x-x-109">.ac dec nd fstart fstop </span><br
class="newline" /><span
class="cmtt-10x-x-109">.ac oct no fstart fstop </span><br
class="newline" /><span
class="cmtt-10x-x-109">.ac lin np fstart fstop</span> <a
id="dx1-52003"></a><br
class="newline" />Here, <span
class="cmtt-10x-x-109">dec </span>stands for decade variation and <span
class="cmtt-10x-x-109">nd </span>is the number of points per decade. <span
class="cmtt-10x-x-109">oct </span>stands
for octave variation and <span
class="cmtt-10x-x-109">no </span>is the number of points per octave. <span
class="cmtt-10x-x-109">lin </span>stands for linear variation
and <span
class="cmtt-10x-x-109">np </span>is the number of points. <span
class="cmtt-10x-x-109">fstart </span>is the starting frequency and <span
class="cmtt-10x-x-109">fstop </span>is the final
frequency.
<!--l. 192--><p class="indent" > If the <span
class="cmtt-10x-x-109">.ac </span>analysis is included in the analysis file, Ngspice performs an AC analysis of the
circuit over the specified frequency range. Note that in order for this analysis to be
meaningful, at least one independent source must have been specified with an ac value. While
creating the schematic for performing ac analysis, add the component <span
class="cmtt-10x-x-109">AC </span>from the
<span
class="cmti-10x-x-109">sourcesSpice </span>library.
<h4 class="subsectionHead"><span class="titlemark">6.1.4 </span> <a
id="x1-530006.1.4"></a>Transient analysis inserter</h4>
<a
id="dx1-53001"></a>
<!--l. 199--><p class="noindent" >When one clicks on the option <span
class="cmti-10x-x-109">Transient </span>in the <span
class="cmti-10x-x-109">Analysis Inserter </span>GUI, the window given in
Fig. <a
href="#x1-530034">6.4<!--tex4ht:ref: 6 --></a> appears. Here one needs to enter the details of <span
class="cmti-10x-x-109">start time</span>, <span
class="cmti-10x-x-109">step time</span>, and <span
class="cmti-10x-x-109">stop time</span>.
After entering these values, click on <span
class="cmti-10x-x-109">Add Simulation Data</span>. The analysis statement is
generated. It is of the form:
<!--l. 206--><p class="indent" > <span
class="cmtt-10x-x-109">.tran tstep tstop tstart</span><a
id="dx1-53002"></a>
<!--l. 208--><p class="indent" > Here, <span
class="cmtt-10x-x-109">tstep </span>is the printing or plotting increment for line-printer output. For use
with the post-processor, <span
class="cmtt-10x-x-109">tstep </span>is the suggested computing increment. <span
class="cmtt-10x-x-109">tstop </span>is the
final time, and <span
class="cmtt-10x-x-109">tstart </span>is the initial time. If tstart is omitted, it is assumed to be
zero.
<!--l. 214--><p class="indent" > The transient analysis always begins at time zero. In the interval <span
class="cmmi-10x-x-109"><</span><span
class="cmtt-10x-x-109">zero, tstart</span><span
class="cmmi-10x-x-109">></span>, the
circuit is analyzed (to reach a steady state), but no outputs are stored. In the interval
<span
class="cmmi-10x-x-109"><</span><span
class="cmtt-10x-x-109">tstart, tstop</span><span
class="cmmi-10x-x-109">></span>, the circuit is analyzed and outputs are stored. <hr class="figure"><div class="figure"
>
<a
id="x1-530034"></a>
<!--l. 221--><p class="noindent" ><img
src="figures/trans1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.4: </span><span
class="content">Transient Analysis GUI</span></div><!--tex4ht:label?: x1-530034 -->
<!--l. 224--><p class="indent" > </div><hr class="endfigure">
<h3 class="sectionHead"><span class="titlemark">6.2 </span> <a
id="x1-540006.2"></a>Adding Source Details</h3>
<!--l. 227--><p class="noindent" >Source details is basically a dynamic tab, i.e. the feilds are added as per the circuit. The
number of sources schematic has like AC,DC is the number of fields that get added in the
GUI. Consider a Half-Adder circuit as shown in Fig. <a
href="#x1-540015">6.5<!--tex4ht:ref: halfschematic --></a> <hr class="figure"><div class="figure"
>
<a
id="x1-540015"></a>
<!--l. 231--><p class="noindent" ><img
src="figures/halfschematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.5: </span><span
class="content">Half Adder Schematic</span></div><!--tex4ht:label?: x1-540015 -->
<!--l. 234--><p class="indent" > </div><hr class="endfigure">
<!--l. 235--><p class="indent" > Here, total three DC input source are used and hence the source detail GUI wuould be
having three input fields as shown is Fig. <a
href="#x1-540026">6.6<!--tex4ht:ref: sourcedetails --></a> <hr class="figure"><div class="figure"
>
<a
id="x1-540026"></a>
<!--l. 238--><p class="noindent" ><img
src="figures/sourcedetails.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.6: </span><span
class="content">Source Details of Half-Adder</span></div><!--tex4ht:label?: x1-540026 -->
<!--l. 241--><p class="indent" > </div><hr class="endfigure">
<h3 class="sectionHead"><span class="titlemark">6.3 </span> <a
id="x1-550006.3"></a>Adding Ngspice Model</h3>
<!--l. 247--><p class="noindent" >
<h3 class="sectionHead"><span class="titlemark">6.4 </span> <a
id="x1-560006.4"></a>Adding Device Model Library</h3>
<!--l. 248--><p class="noindent" >Spice based simulators include a feature which allows accurate modeling of semiconductor
devices such as diodes, transistors etc. Model libraries holds these features to define
models for devices such as diodes, MOSFET, BJT, JFET, IGBT, Magnetic core
etc.
<!--l. 251--><p class="indent" > The fields in this tab are added for each such device in the circuit and the corresponding
model library is added. In the example of bridgerectifier as shown in Fig. <a
href="#x1-560017">6.7<!--tex4ht:ref: bridgerectifier --></a> for four diodes
library files are added as in Fig. <span
class="cmbx-10x-x-109">??</span> <hr class="figure"><div class="figure"
>
<a
id="x1-560017"></a>
<!--l. 254--><p class="noindent" ><img
src="figures/bridgerectifier.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.7: </span><span
class="content">Schematic of Bridge Rectifier</span></div><!--tex4ht:label?: x1-560017 -->
<!--l. 257--><p class="indent" > </div><hr class="endfigure">
<!--l. 259--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-560028"></a>
<!--l. 261--><p class="noindent" ><img
src="figures/devicemodel.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.8: </span><span
class="content">Device Model GUI Window</span></div><!--tex4ht:label?: x1-560028 -->
<!--l. 264--><p class="indent" > </div><hr class="endfigure">
<h3 class="sectionHead"><span class="titlemark">6.5 </span> <a
id="x1-570006.5"></a>Adding Sub Circuit</h3>
<!--l. 267--><p class="noindent" >Sub-circuiting is the way of hierarchical modeling. The sub circuit file in the main circuits
needs to be added before converting it. Let us consider the simple example of Full-Adder
circuit containing two half adder sub circuits.
<!--l. 270--><p class="noindent" >
<h3 class="sectionHead"><span class="titlemark">6.6 </span> <a
id="x1-580006.6"></a>Kicad to Ngspice Conversion</h3>
<!--l. 271--><p class="noindent" >After Filling up the values in all the above mentioned fields the convert button is pressed for
the conversion process to finish. If all the files are added the <span
class="cmtt-10x-x-109">successful </span>messege box is
popped on the screen as shown in Fig. <a
href="#x1-580019">6.9<!--tex4ht:ref: success --></a>. Then click <span
class="cmtt-10x-x-109">ok</span>, this will create the <span
class="cmtt-10x-x-109">.cir.out,</span>
<span
class="cmtt-10x-x-109">analysis </span>and other files in the project folders.
<!--l. 274--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-580019"></a>
<!--l. 276--><p class="noindent" ><img
src="figures/convert.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.9: </span><span
class="content">Successful Conversion Pop-Up Window</span></div><!--tex4ht:label?: x1-580019 -->
<!--l. 279--><p class="indent" > </div><hr class="endfigure">
<h3 class="sectionHead"><span class="titlemark">6.7 </span> <a
id="x1-590006.7"></a>Simulation</h3>
<!--l. 282--><p class="noindent" >After the Kicad to Ngspice conversion is successfully completed simulation tab on the toolbar
is clicked to check the output waveform of the project. The windows shown if Fig. <a
href="#x1-5900110">6.10<!--tex4ht:ref: pythonplot --></a> and
Fig. <a
href="#x1-5900211">6.11<!--tex4ht:ref: ngspicewindow --></a> are opned in dockarea.
<!--l. 284--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-5900110"></a>
<!--l. 286--><p class="noindent" ><img
src="figures/pythonplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.10: </span><span
class="content">Pythonplot Window in a Dockarea</span></div><!--tex4ht:label?: x1-5900110 -->
<!--l. 289--><p class="indent" > </div><hr class="endfigure">
<!--l. 291--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-5900211"></a>
<!--l. 293--><p class="noindent" ><img
src="figures/ngspicewindow.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.11: </span><span
class="content">Ngspice Terminal in a Dockarea</span></div><!--tex4ht:label?: x1-5900211 -->
<!--l. 296--><p class="indent" > </div><hr class="endfigure">
<!--l. 298--><p class="indent" > Following are the commands to be given in Ngspice window.
<ul class="itemize1">
<li class="itemize"><span
class="cmtt-10x-x-109">plot allv </span>- Plots all the voltage waveforms.
</li>
<li class="itemize"><span
class="cmtt-10x-x-109">plot v(node-name) </span>- Plot a waveform of the node-name voltage source.</li></ul>
<!--l. 304--><p class="indent" > The output in the ngspice window is shown in Fig. <a
href="#x1-5900312">6.12<!--tex4ht:ref: ngspiceoutput --></a> <hr class="figure"><div class="figure"
>
<a
id="x1-5900312"></a>
<!--l. 307--><p class="noindent" ><img
src="figures/ngspiceoutput.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.12: </span><span
class="content">Output in a Ngspice Window</span></div><!--tex4ht:label?: x1-5900312 -->
<!--l. 310--><p class="indent" > </div><hr class="endfigure">
<!--l. 313--><p class="indent" > Likewise, in the pythonplot window the checkbox of a perticular source can be chosen
and then <span
class="cmtt-10x-x-109">PLOT </span>button is clicked. Ths output in pythonplot window is shown in
Fig. <a
href="#x1-5900413">6.13<!--tex4ht:ref: pythonplot1 --></a>
<!--l. 315--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-5900413"></a>
<!--l. 317--><p class="noindent" ><img
src="figures/pythonplot1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.13: </span><span
class="content">output in a Pythonplot Window</span></div><!--tex4ht:label?: x1-5900413 -->
<!--l. 320--><p class="indent" > </div><hr class="endfigure">
<h2 class="chapterHead"><span class="titlemark">Chapter 7</span><br /><a
id="x1-600007"></a>PCB Design</h2> Printed Circuit Board (PCB) <a
id="dx1-60001"></a>design is an important step in
electronic system design. Every component of the circuit needs to be placed and connections
routed to minimise delay and area. Each component has an associated footprint. Footprint
refers to the physical layout of a component that is required to mount it on the PCB.<a
id="dx1-60002"></a> <a
id="dx1-60003"></a>PCB
design involves associating footprints to all components, placing them appropriately to
minimise wire length and area, connecting the footprints using tracks/vias and finally
extracting the required files needed for printing the PCB. Let us see the steps to design PCB
using eSim.
<h3 class="sectionHead"><span class="titlemark">7.1 </span> <a
id="x1-610007.1"></a>Schematic creation for PCB design</h3>
<!--l. 16--><p class="noindent" >In Chapter <a
href="#x1-320005">5<!--tex4ht:ref: chap5 --></a>, we have seen the differences between schematic for simulation and schematic
for PCB design. Let us design the PCB for an RC circuit. A resistor, capacitor, ground, power
flag and a connector are required. Connectors are used to take signals in and out of the
PCB.
<!--l. 22--><p class="indent" > Create the circuit schematic as shown in Fig. <a
href="#x1-610011">7.1<!--tex4ht:ref: pcbschfin --></a>. The two pin connector (<span
class="cmti-10x-x-109">CONN</span><span
class="cmti-10x-x-109">_2</span>) can
be placed from the EEschema library <span
class="cmti-10x-x-109">conn</span>. See Sec. <span
class="cmbx-10x-x-109">??</span> to know more about EEschema
library <span
class="cmti-10x-x-109">conn</span>. Do the annotation and test for ERC. Refer to Chapter <a
href="#x1-320005">5<!--tex4ht:ref: chap5 --></a> to know more about
basic steps in schematic creation.
<!--l. 29--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-610011"></a>
<!--l. 31--><p class="noindent" ><img
src="figures/pcbschfin.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.1: </span><span
class="content">Final circuit schematic for RC low pass circuit</span></div><!--tex4ht:label?: x1-610011 -->
<!--l. 34--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">7.1.1 </span> <a
id="x1-620007.1.1"></a>Netlist generation for PCB</h4>
<a
id="dx1-62001"></a>
<a
id="dx1-62002"></a>
<!--l. 39--><p class="noindent" >The netlist for PCB is different from that for simulation. To generate netlist for PCB, click on
the <span
class="cmti-10x-x-109">Generate netlist </span>tool from the top toolbar in Schematic editor. In the Netlist window,
under the tab <span
class="cmti-10x-x-109">Pcbnew</span>, <a
id="dx1-62003"></a>click on the button <span
class="cmti-10x-x-109">Netlist</span>. This is shown in Fig. <a
href="#x1-620042">7.2<!--tex4ht:ref: netlistpcb --></a>. Click on
<span
class="cmti-10x-x-109">Save </span>in the Save netlist file dialog box that opens up. Do not change the directory
or the name of the netlist file. Save the schematic and close the schematic editor.
<hr class="figure"><div class="figure"
>
<a
id="x1-620042"></a>
<!--l. 49--><p class="noindent" ><img
src="figures/netlistpcb.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.2: </span><span
class="content">Netlist generation for PCB</span></div><!--tex4ht:label?: x1-620042 -->
<!--l. 52--><p class="indent" > </div><hr class="endfigure">
<!--l. 53--><p class="indent" > <span
class="cmti-10x-x-109">Note that the netlist for PCB has an extension </span><span
class="cmtt-10x-x-109">.net</span><span
class="cmti-10x-x-109">. The netlist created for simulation</span>
<span
class="cmti-10x-x-109">has an extension </span><span
class="cmtt-10x-x-109">.cir</span>.
<h4 class="subsectionHead"><span class="titlemark">7.1.2 </span> <a
id="x1-630007.1.2"></a>Mapping of components using Footprint Editor</h4>
<a
id="dx1-63001"></a>
<a
id="dx1-63002"></a>
<a
id="dx1-63003"></a>
<!--l. 60--><p class="noindent" >Once the netlist for PCB is created, one needs to map each component in the netlist to a
footprint. The tool <span
class="cmti-10x-x-109">Footprint Editor </span>is used for this. eSim uses <span
class="cmtt-10x-x-109">CvPcb </span>as its footprint editor.
<span
class="cmtt-10x-x-109">CvPcb </span>is the footprint editor tool in KiCad. <a
id="dx1-63004"></a>
<!--l. 65--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">7.1.3 </span> <a
id="x1-640007.1.3"></a>Familiarising the Footprint Editor tool</h4>
<a
id="dx1-64001"></a>
<!--l. 68--><p class="noindent" >If one opens the <span
class="cmti-10x-x-109">Footprint Editor </span>after creating the <span
class="cmtt-10x-x-109">.net </span>netlist file, the Footprint editor as
shown in Fig. <a
href="#x1-640023">7.3<!--tex4ht:ref: fe --></a> will be obtained. The menu bar and toolbars and the panes are marked in
this figure. The menu bar will be available in the top left corner. The left pane has a list of
components in the netlist file and the right pane has a list of available footprints for each
component. <hr class="figure"><div class="figure"
>
<a
id="x1-640023"></a>
<!--l. 76--><p class="noindent" ><img
src="figures/fe.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.3: </span><span
class="content">Footprint editor with the menu bar, toolbar, left pane and right pane
marked</span></div><!--tex4ht:label?: x1-640023 -->
<!--l. 79--><p class="indent" > </div><hr class="endfigure">
<!--l. 80--><p class="indent" > <span
class="cmti-10x-x-109">Note that if the Footprint Editor is opened before creating a ‘.net’ file, then the left and</span>
<span
class="cmti-10x-x-109">right panes will be empty</span>.
<h5 class="subsubsectionHead"><a
id="x1-650007.1.3"></a>Toolbar</h5>
<!--l. 83--><p class="noindent" >Some of the important tools in the toolbar are shown in Fig. <a
href="#x1-650014">7.4<!--tex4ht:ref: tb_fe --></a>. They are explained below:
<hr class="figure"><div class="figure"
>
<a
id="x1-650014"></a>
<!--l. 87--><p class="noindent" ><img
src="figures/tb_fe.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.4: </span><span
class="content">Some important tools in the toolbar</span></div><!--tex4ht:label?: x1-650014 -->
<!--l. 90--><p class="indent" > </div><hr class="endfigure">
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Save netlist and footprint files - Save the netlist and the footprints that are
associated with it.
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">View selected footprint - View the selected footprint in 2D. See Sec. <a
href="#x1-660007.1.4">7.1.4<!--tex4ht:ref: viewfp --></a> for more
details.
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Automatic footprint association - Perform footprint association for each
component automatically. Footprints will be selected from the list of footprints
available.
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">Delete all associations - Delete all the footprint associations made
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">Display filtered footprint list - Display a filtered list of footprints suitable to the
selected component
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">Display full footprint list - Display the list of all footprints available (without
filtering)</dd></dl>
<h4 class="subsectionHead"><span class="titlemark">7.1.4 </span> <a
id="x1-660007.1.4"></a>Viewing footprints in 2D and 3D</h4>
<a
id="dx1-66001"></a>
<a
id="dx1-66002"></a>
<!--l. 111--><p class="noindent" >To view a footprint in 2D, select it from the right pane and click on <span
class="cmti-10x-x-109">View selected footprint</span>
from the menu bar. Let us view the footprint for <span
class="cmtt-10x-x-109">SM1210</span>. Choose SM1210 from
the right pane as shown in Fig. <a
href="#x1-660035">7.5<!--tex4ht:ref: sm --></a>. On clicking the <span
class="cmti-10x-x-109">View selected footprint </span>tool,
the <span
class="cmtt-10x-x-109">Footprint </span>window with the view in 2D will be displayed. Click on the <span
class="cmti-10x-x-109">3D</span>
tool in the <span
class="cmtt-10x-x-109">Footprint </span>window, as shown in Fig. <a
href="#x1-660046">7.6<!--tex4ht:ref: 3d --></a>. A top view of the selected
footprint in 3D is obtained. Click on the footprint and rotate it using mouse to get 3D
views from various angles. One such side view of the footprint in 3D is shown in
Fig. <a
href="#x1-660057">7.7<!--tex4ht:ref: 3dv --></a>.
<!--l. 122--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-660035"></a>
<!--l. 124--><p class="noindent" ><img
src="figures/sm.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.5: </span><span
class="content">Viewing footprint for SM1210: 1. Choose the footprint SM1210 from the
right pane, 2. Click on <span
class="cmti-10x-x-109">View selected footprint</span></span></div><!--tex4ht:label?: x1-660035 -->
<!--l. 128--><p class="indent" > </div><hr class="endfigure">
<!--l. 129--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-660046"></a>
<!--l. 131--><p class="noindent" ><img
src="figures/3d.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.6: </span><span
class="content">Footprint view in 2D. Click on <span
class="cmti-10x-x-109">3D </span>to get 3D view</span></div><!--tex4ht:label?: x1-660046 -->
<!--l. 134--><p class="indent" > </div><hr class="endfigure">
<!--l. 135--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-660057"></a>
<!--l. 137--><p class="noindent" ><img
src="figures/3dv.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.7: </span><span
class="content">Side view of the footprint in 3D</span></div><!--tex4ht:label?: x1-660057 -->
<!--l. 140--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">7.1.5 </span> <a
id="x1-670007.1.5"></a>Mapping of components in the RC circuit</h4>
<!--l. 143--><p class="noindent" >Click on <span
class="cmtt-10x-x-109">C1 </span>from the left pane. Choose the footprint <span
class="cmti-10x-x-109">C1 </span>from the right pane by double
clicking on it. Click on connector <span
class="cmtt-10x-x-109">P1 </span>from the left pane. Choose the footprint <span
class="cmti-10x-x-109">SIL-2 </span>from the
right pane by double clicking on it. Similarly choose the footprint <span
class="cmti-10x-x-109">R3 </span>for the resistor <span
class="cmtt-10x-x-109">R1</span>. The
footprint mapping is shown in Fig. <a
href="#x1-670018">7.8<!--tex4ht:ref: map --></a>. Save the footprint association by clicking on the <span
class="cmti-10x-x-109">Save</span>
<span
class="cmti-10x-x-109">netlist and footprint files </span>tool from the <span
class="cmtt-10x-x-109">CvPcb </span>toolbar. The <span
class="cmtt-10x-x-109">Save Net and component List</span>
window appears. Browse to the directory where the schematic file for this project is saved and
click on <span
class="cmti-10x-x-109">Save</span>. The netlist gets saved and the <span
class="cmti-10x-x-109">Footprint Editor </span>window closes automatically.
<hr class="figure"><div class="figure"
>
<a
id="x1-670018"></a>
<!--l. 156--><p class="noindent" ><img
src="figures/map.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.8: </span><span
class="content">Footprint mapping done</span></div><!--tex4ht:label?: x1-670018 -->
<!--l. 159--><p class="indent" > </div><hr class="endfigure">
<!--l. 160--><p class="indent" > <span
class="cmti-10x-x-109">Note that one needs to browse to the directory where the schematic file is saved and save</span>
<span
class="cmti-10x-x-109">the ‘.net’ file in the same directory</span>.
<h3 class="sectionHead"><span class="titlemark">7.2 </span> <a
id="x1-680007.2"></a>Creation of PCB layout</h3>
<a
id="dx1-68001"></a>
<a
id="dx1-68002"></a>
<!--l. 165--><p class="noindent" >The next step is to place the footprints and lay tracks between them to get the layout. This is
done using the <span
class="cmti-10x-x-109">Layout Editor </span>tool. eSim uses <span
class="cmtt-10x-x-109">Pcbnew</span>, the layout creation tool in KiCad, as its
layout editor.
<!--l. 170--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">7.2.1 </span> <a
id="x1-690007.2.1"></a>Familiarising the Layout Editor tool</h4>
<a
id="dx1-69001"></a>
<!--l. 173--><p class="noindent" >The layout editor with the various menu bar and toolbars is shown in Fig. <a
href="#x1-690029">7.9<!--tex4ht:ref: pcbnew --></a>.
<hr class="figure"><div class="figure"
>
<a
id="x1-690029"></a>
<!--l. 177--><p class="noindent" ><img
src="figures/pcbnew.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.9: </span><span
class="content">Layout editor with menu bar, toolbars and layer options marked</span></div><!--tex4ht:label?: x1-690029 -->
<!--l. 180--><p class="indent" > </div><hr class="endfigure">
<!--l. 181--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-6900310"></a>
<!--l. 183--><p class="noindent" ><img
src="figures/toptble.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.10: </span><span
class="content">Top toolbar with important tools marked</span></div><!--tex4ht:label?: x1-6900310 -->
<!--l. 186--><p class="indent" > </div><hr class="endfigure">
<h5 class="subsubsectionHead"><a
id="x1-700007.2.1"></a>Top toolbar</h5>
<!--l. 189--><p class="noindent" >Some of the important menu options in the top menu bar are shown in Fig. <a
href="#x1-6900310">7.10<!--tex4ht:ref: toptble --></a>. They are
explained below:
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Save board - Save the printed circuit board
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Module editor - Open module editor to edit footprint modules or libraries
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Read netlist - Import the netlist whose layout needs to be created.
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">Perform design rules check - Check for design rules, unconnected nets, etc., in the
layout.
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">Select working layer - Selection of working layer
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">Show active layer selections and select layer pair for route and place - Select layer
in top and bottom layers. It also shows the currently active layer selections.
</dd><dt class="compactenum">
7. </dt><dd
class="compactenum">Mode footprint: Manual/automatic move and place - Move and place modules</dd></dl>
<!--l. 207--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">7.2.2 </span> <a
id="x1-710007.2.2"></a>Hotkeys</h4>
<a
id="dx1-71001"></a>
<!--l. 209--><p class="noindent" >A list of hotkeys are given below:
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">F1 - Zoom in
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">F2 - Zoom out
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Delete - Delete Track or Footprint
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">X - Add new track
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">V - Add Via
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">M - Move Item
</dd><dt class="compactenum">
7. </dt><dd
class="compactenum">F - Flip Footprint
</dd><dt class="compactenum">
8. </dt><dd
class="compactenum">R - Rotate Item
</dd><dt class="compactenum">
9. </dt><dd
class="compactenum">G - Drag Footprint
</dd><dt class="compactenum">
10. </dt><dd
class="compactenum">Ctrl+Z - Undo
</dd><dt class="compactenum">
11. </dt><dd
class="compactenum">E - Edit Item</dd></dl>
<!--l. 223--><p class="noindent" >The list can be viewed by selecting <span
class="cmti-10x-x-109">Preferences </span>from the top menu bar and choosing <span
class="cmti-10x-x-109">List Current</span>
<span
class="cmti-10x-x-109">Keys </span>from the option <span
class="cmti-10x-x-109">Hotkeys</span>.
<!--l. 227--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">7.2.3 </span> <a
id="x1-720007.2.3"></a>PCB design example using RC circuit</h4>
<a
id="dx1-72001"></a>
<!--l. 228--><p class="noindent" >Click on <span
class="cmti-10x-x-109">Layout Editor </span>from the eSim toolbar. Click on <span
class="cmti-10x-x-109">Read Netlist </span>tool from the top
toolbar. Click on <span
class="cmti-10x-x-109">Browse Netlist files </span>on the Netlist window that opens up. Select the <span
class="cmtt-10x-x-109">.net </span>file
that was modified after assigning footprints. Click on <span
class="cmti-10x-x-109">Open</span>. Now Click on <span
class="cmti-10x-x-109">Read Current</span>
<span
class="cmti-10x-x-109">Netlist </span>on the Netlist window. The message area in the Netlist window says that
the RC_pcb.net has been read. The sequence of operations is shown in Fig. <a
href="#x1-7200411">7.11<!--tex4ht:ref: brnet --></a>.
<a
id="dx1-72002"></a><a
id="dx1-72003"></a><hr class="figure"><div class="figure"
>
<a
id="x1-7200411"></a>
<!--l. 239--><p class="noindent" ><img
src="figures/rcpcb.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.11: </span><span
class="content">Importing netlist file to layout editor: 1. Browse netlist Files, 2. Choose
the RC_pcb.net file, 3. Read Netlist file, 4. Close</span></div><!--tex4ht:label?: x1-7200411 -->
<!--l. 243--><p class="indent" > </div><hr class="endfigure">
<!--l. 244--><p class="indent" > The footprint modules will now be imported to the top left hand corner of the layout
editor window. This is shown in Fig. <a
href="#x1-7200512">7.12<!--tex4ht:ref: netlisttop --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-7200512"></a>
<!--l. 248--><p class="noindent" ><img
src="figures/netlisttop.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.12: </span><span
class="content">Footprint modules imported to top left corner of layout editor window</span></div><!--tex4ht:label?: x1-7200512 -->
<!--l. 251--><p class="indent" > </div><hr class="endfigure">
<!--l. 252--><p class="indent" > Zoom in to the top left corner by pressing the key <span
class="cmtt-10x-x-109">F1 </span>or using the scroll button of the
mouse. The zoomed in version of the imported netlist is shown in Fig. <a
href="#x1-7200613">7.13<!--tex4ht:ref: zoom --></a>.
<!--l. 256--><p class="indent" > Let us now place this in the center of the layout editor window. <hr class="figure"><div class="figure"
>
<a
id="x1-7200613"></a>
<!--l. 260--><p class="noindent" ><img
src="figures/zoom.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.13: </span><span
class="content">Zoomed in version of the imported netlist</span></div><!--tex4ht:label?: x1-7200613 -->
<!--l. 263--><p class="indent" > </div><hr class="endfigure">
<!--l. 264--><p class="indent" > Click on <span
class="cmti-10x-x-109">Mode footprint: Manual/automatic move and place </span>tool from the top toolbar.
Place the cursor near the center of the layout editor window. Right click and choose <span
class="cmti-10x-x-109">Glob</span>
<span
class="cmti-10x-x-109">move and place</span>. Choose <span
class="cmti-10x-x-109">move all modules</span>. The sequence of operations is shown in Fig. <a
href="#x1-7200714">7.14<!--tex4ht:ref: movep --></a>.
Click on <span
class="cmti-10x-x-109">Yes </span>on the confirmation window to move the modules. Zoom in using the F1 key.
The current placement of components after zooming in is shown in Fig. <a
href="#x1-72008r1">7.15a<!--tex4ht:ref: curplace --></a>.
<hr class="figure"><div class="figure"
>
<a
id="x1-7200714"></a>
<!--l. 273--><p class="noindent" ><img
src="figures/movep.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.14: </span><span
class="content">Moving and placing modules to the center of layout editor. 1. Click on
<span
class="cmti-10x-x-109">Mode footprint: Manual/automatic move and place</span>, 2. Place cursor at center of layout
editor and right click on it 3. Choose <span
class="cmti-10x-x-109">Glob Move and Place </span>and then choose <span
class="cmti-10x-x-109">Move All</span>
<span
class="cmti-10x-x-109">Modules.</span></span></div><!--tex4ht:label?: x1-7200714 -->
<!--l. 280--><p class="indent" > </div><hr class="endfigure">
<!--l. 287--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-7201015"></a>
<a
id="x1-72008r1"></a>
<!--l. 291--><p class="noindent" > <img
src="figures/curplace.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Zoomed</span>
<span
class="cmr-9">in</span>
<span
class="cmr-9">version</span>
<span
class="cmr-9">of the</span>
<span
class="cmr-9">current</span>
<span
class="cmr-9">placement</span>
<span
class="cmr-9">after</span>
<span
class="cmr-9">moving</span>
<span
class="cmr-9">modules</span>
<span
class="cmr-9">to the</span>
<span
class="cmr-9">center</span>
<span
class="cmr-9">of the</span>
<span
class="cmr-9">layout</span>
<span
class="cmr-9">editor</span> <a
id="x1-72009r2"></a> <img
src="figures/fplace.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Final</span>
<span
class="cmr-9">placement</span>
<span
class="cmr-9">of</span>
<span
class="cmr-9">footprints</span>
<span
class="cmr-9">after</span>
<span
class="cmr-9">rotating</span>
<span
class="cmr-9">and</span>
<span
class="cmr-9">moving</span>
<span
class="cmr-9">P1</span>
<br /> <div class="caption"
><span class="id">Figure 7.15: </span><span
class="content">Different stages of placement of modules on PCB</span></div><!--tex4ht:label?: x1-7201015 -->
<!--l. 296--><p class="indent" > </div><hr class="endfigure">
<!--l. 297--><p class="indent" > We need to arrange the modules properly to lay tracks. Rotate the connector P1 by
placing the cursor on top of P1 and pressing R. Move it by placing the cursor on top of it and
pressing M. The final placement is shown in Fig. <a
href="#x1-72009r2">7.15b<!--tex4ht:ref: fplace --></a>. <a
id="dx1-72011"></a>
<!--l. 303--><p class="indent" > Let us now lay the tracks. Let us first change the track width. Click on <span
class="cmti-10x-x-109">Design rules </span>from
the top menu bar. Click on <span
class="cmti-10x-x-109">Design rules</span>. This is shown in Fig. <a
href="#x1-7201416">7.16<!--tex4ht:ref: drules --></a>. The <span
class="cmti-10x-x-109">Design Rules Editor</span>
window opens up. Here one can edit the various design rules. Double click on the track width
field to edit it. Type 0.8 and press <span
class="cmtt-10x-x-109">Enter</span>. Click on OK. Fig. <a
href="#x1-7201517">7.17<!--tex4ht:ref: druleedit --></a> shows the sequence of
operations. <a
id="dx1-72012"></a><a
id="dx1-72013"></a> <hr class="figure"><div class="figure"
>
<a
id="x1-7201416"></a>
<!--l. 313--><p class="noindent" ><img
src="figures/drules.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.16: </span><span
class="content">Choose <span
class="cmti-10x-x-109">Design Rules </span>from the top menu bar and <span
class="cmti-10x-x-109">Design Rules </span>again</span></div><!--tex4ht:label?: x1-7201416 -->
<!--l. 317--><p class="indent" > </div><hr class="endfigure">
<!--l. 318--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-7201517"></a>
<!--l. 320--><p class="noindent" ><img
src="figures/druleedit.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.17: </span><span
class="content">Changing the track width: 1. Double click on <span
class="cmti-10x-x-109">Track Width </span>field and type
0.8, 2. Click on <span
class="cmti-10x-x-109">OK</span></span></div><!--tex4ht:label?: x1-7201517 -->
<!--l. 324--><p class="indent" > </div><hr class="endfigure">
<!--l. 326--><p class="indent" > Click on <span
class="cmti-10x-x-109">Back </span>from the <span
class="cmti-10x-x-109">Layer </span>options as shown in Fig. <a
href="#x1-7201718">7.18<!--tex4ht:ref: layer --></a>. <a
id="dx1-72016"></a><hr class="figure"><div class="figure"
>
<a
id="x1-7201718"></a>
<!--l. 330--><p class="noindent" ><img
src="figures/layer.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.18: </span><span
class="content">Choosing the copper layer <span
class="cmti-10x-x-109">Back</span></span></div><!--tex4ht:label?: x1-7201718 -->
<!--l. 333--><p class="indent" > </div><hr class="endfigure">
<!--l. 334--><p class="indent" > Let us now start laying the tracks. Place the cursor above the left terminal of R1
in the layout editor window. Press the key <span
class="cmtt-10x-x-109">x</span>. Move the cursor down and double
click on the left terminal of C1. A track is formed. This is shown in Fig. <a
href="#x1-72018r1">7.19a<!--tex4ht:ref: track1 --></a>.
<hr class="figure"><div class="figure"
>
<a
id="x1-7202119"></a>
<a
id="x1-72018r1"></a>
<!--l. 342--><p class="noindent" > <img
src="figures/track1.png" alt="PIC"
>
<span
class="cmr-9">(a) A</span>
<span
class="cmr-9">track</span>
<span
class="cmr-9">formed</span>
<span
class="cmr-9">between</span>
<span
class="cmr-9">resistor</span>
<span
class="cmr-9">and</span>
<span
class="cmr-9">capacitor</span> <a
id="x1-72019r2"></a> <img
src="figures/track2.png" alt="PIC"
>
<span
class="cmr-9">(b) A</span>
<span
class="cmr-9">track</span>
<span
class="cmr-9">formed</span>
<span
class="cmr-9">between</span>
<span
class="cmr-9">capacitor</span>
<span
class="cmr-9">and</span>
<span
class="cmr-9">connector</span> <a
id="x1-72020r3"></a> <img
src="figures/track3.png" alt="PIC"
>
<span
class="cmr-9">(c) A</span>
<span
class="cmr-9">track</span>
<span
class="cmr-9">formed</span>
<span
class="cmr-9">between</span>
<span
class="cmr-9">connector</span>
<span
class="cmr-9">and</span>
<span
class="cmr-9">resistor</span>
<br /> <div class="caption"
><span class="id">Figure 7.19: </span><span
class="content">Different stages of laying tracks during PCB design</span></div><!--tex4ht:label?: x1-7202119 -->
<!--l. 350--><p class="indent" > </div><hr class="endfigure">
<!--l. 351--><p class="indent" > Similarly lay the track between capacitor C1 and connector P1 as shown in
Fig. <a
href="#x1-72019r2">7.19b<!--tex4ht:ref: track2 --></a>. The last track needs to be laid at an angle. To do so, place the cursor
above the second terminal of R1. Press the key x and move the cursor diagonally
down. Double click on the other terminal of the connector. The track will be laid
as shown in Fig. <a
href="#x1-72020r3">7.19c<!--tex4ht:ref: track3 --></a>. All tracks are now laid. The next step is to create PCB
edges.
<!--l. 359--><p class="indent" > Choose <span
class="cmti-10x-x-109">PCB</span><span
class="cmti-10x-x-109">_edges </span>from the <span
class="cmti-10x-x-109">Layer </span>options to add edges. Click on <span
class="cmti-10x-x-109">Add graphic line or</span>
<span
class="cmti-10x-x-109">polygon </span>from the toolbar on the left. Fig. <a
href="#x1-7202320">7.20<!--tex4ht:ref: pcbedges --></a> shows the sequence of operations. Let us now
start drawing edges for PCB. <a
id="dx1-72022"></a><hr class="figure"><div class="figure"
>
<a
id="x1-7202320"></a>
<!--l. 366--><p class="noindent" ><img
src="figures/pcbedges.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.20: </span><span
class="content">Creating PCB edges: 1. Choose <span
class="cmti-10x-x-109">PCB</span><span
class="cmti-10x-x-109">_Edges </span>from <span
class="cmti-10x-x-109">Layer </span>options 2. Choose
<span
class="cmti-10x-x-109">Add graphic line or polygon </span>from left toolbar</span></div><!--tex4ht:label?: x1-7202320 -->
<!--l. 371--><p class="indent" > </div><hr class="endfigure">
<!--l. 372--><p class="indent" > Click to the left of the layout. Move cursor horizontally to the right. Click once to change
orientation. Move cursor vertically down. Draw the edges as shown in Fig. <a
href="#x1-7202421">7.21<!--tex4ht:ref: pcbed --></a>. Double click
to finish drawing the edges. <hr class="figure"><div class="figure"
>
<a
id="x1-7202421"></a>
<!--l. 378--><p class="noindent" ><img
src="figures/pcbed.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.21: </span><span
class="content">PCB edges drawn</span></div><!--tex4ht:label?: x1-7202421 -->
<!--l. 381--><p class="indent" > </div><hr class="endfigure">
<!--l. 383--><p class="indent" > Click on <span
class="cmti-10x-x-109">Perform design rules check </span>from the top toolbar to check for design rules. The
<span
class="cmti-10x-x-109">DRC Control </span>window opens up. Click on <span
class="cmti-10x-x-109">Start DRC</span>. There are no errors under the <span
class="cmtt-10x-x-109">Error</span>
<span
class="cmtt-10x-x-109">messages </span>tab. Click on <span
class="cmti-10x-x-109">OK </span>to close DRC control window. Fig. <a
href="#x1-7202622">7.22<!--tex4ht:ref: drc --></a> shows the sequence of
operations. <a
id="dx1-72025"></a><hr class="figure"><div class="figure"
>
<a
id="x1-7202622"></a>
<!--l. 391--><p class="noindent" ><img
src="figures/drc.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.22: </span><span
class="content">Performing design rules check: 1. Click on <span
class="cmti-10x-x-109">Start DRC</span>, 2. Click on <span
class="cmti-10x-x-109">Ok</span></span></div><!--tex4ht:label?: x1-7202622 -->
<!--l. 395--><p class="indent" > </div><hr class="endfigure">
<!--l. 396--><p class="indent" > Click on <span
class="cmti-10x-x-109">Save board </span>on the top toolbar.
<!--l. 398--><p class="indent" > To generate Gerber files, click on <span
class="cmti-10x-x-109">File </span>from the top menu bar. Click on <span
class="cmti-10x-x-109">Plot</span>. This is shown
in Fig. <a
href="#x1-7202823">7.23<!--tex4ht:ref: plot --></a>. The plot window opens up. One can choose which layers to plot by
selecting/deselecting them from the <span
class="cmtt-10x-x-109">Layers </span>pane on the left side. One can also choose the
format used to plot them. Choose <span
class="cmti-10x-x-109">Gerber</span>. The output directory of the plots created
can also be chosen. By default, it is the project directory. Some more options can
be chosen in this window. Click on <span
class="cmti-10x-x-109">Plot</span>. The message window shows the location
in which the Gerber files are created. Click on <span
class="cmti-10x-x-109">Close</span>. This is shown in Fig. <a
href="#x1-7202924">7.24<!--tex4ht:ref: plot2 --></a>.
<a
id="dx1-72027"></a><hr class="figure"><div class="figure"
>
<a
id="x1-7202823"></a>
<!--l. 411--><p class="noindent" ><img
src="figures/plot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.23: </span><span
class="content">Choosing <span
class="cmti-10x-x-109">Plot </span>from the <span
class="cmti-10x-x-109">File </span>menu</span></div><!--tex4ht:label?: x1-7202823 -->
<!--l. 414--><p class="indent" > </div><hr class="endfigure">
<!--l. 415--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-7202924"></a>
<!--l. 417--><p class="noindent" ><img
src="figures/plot2.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.24: </span><span
class="content">Creating Gerber files: 1. Choose <span
class="cmti-10x-x-109">Gerber </span>as the plot format, 2. Click on
<span
class="cmti-10x-x-109">Plot</span>. Message window shows location in which Gerber files are created, 3. Click on <span
class="cmti-10x-x-109">Close</span></span></div><!--tex4ht:label?: x1-7202924 -->
<!--l. 422--><p class="indent" > </div><hr class="endfigure">
<!--l. 423--><p class="indent" > The PCB design of RC circuit is now complete. To know more about Pcbnew, refer to <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>
or <span class="cite"> [<span
class="cmbx-10x-x-109">?</span>]</span>.
<h2 class="chapterHead"><span class="titlemark">Chapter 8</span><br /><a
id="x1-730008"></a>Model Editor</h2>
<!--l. 3--><p class="noindent" >Spice based simulators include a feature which allows accurate modeling of semiconductor
devices such as diodes, transistors etc. eSim Model Builder provides a facility to define a new
model for devices such as diodes, MOSFET, BJT, JFET, IGBT, Magnetic core etc. Model
Builder in eSim lets the user enter the values of parameters depending on the type of device
for which a model is required. The parameter values can be obtained from the data-sheet
of the device. A newly created model can be exported to the model library and
one can import it for different projects, whenever required. Model Builder also
provides a facility to edit existing models. The GUI of the model editor is as shown in
Fig. <a
href="#x1-730011">8.1<!--tex4ht:ref: modeleditor --></a>
<!--l. 14--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-730011"></a>
<!--l. 16--><p class="noindent" ><img
src="figures/modeleditor.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.1: </span><span
class="content">Model Editor</span></div><!--tex4ht:label?: x1-730011 -->
<!--l. 19--><p class="indent" > </div><hr class="endfigure">
<h3 class="sectionHead"><span class="titlemark">8.1 </span> <a
id="x1-740008.1"></a>Creating New Model Library </h3>
<!--l. 23--><p class="noindent" >eSim lets used create new model libraries based on the template model libraries. on selecting
<span
class="cmti-10x-x-109">New </span>button the window is popped to name the new library file. The library file has to be
unique otherwise the error message appears on the window.
<!--l. 26--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-740012"></a>
<!--l. 28--><p class="noindent" ><img
src="figures/modeleditor_new.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.2: </span><span
class="content">Creating New Model Library</span></div><!--tex4ht:label?: x1-740012 -->
<!--l. 31--><p class="indent" > </div><hr class="endfigure">
<!--l. 33--><p class="indent" > After the OK button is pressed the type of model library to be created is chosen by
selecting one of the types on the left hand side i.e. <span
class="cmtt-10x-x-109">Diode, BJT, MOS, JFET, IGBT,</span>
<span
class="cmtt-10x-x-109">Magnetic Core</span>. The template model library is then opened in the tabular form. As shown in
Fig. <a
href="#x1-740023">8.3<!--tex4ht:ref: modelnew --></a>
<!--l. 35--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-740023"></a>
<!--l. 37--><p class="noindent" ><img
src="figures/modelnew.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.3: </span><span
class="content">Choosing the Template Model Library </span></div><!--tex4ht:label?: x1-740023 -->
<!--l. 40--><p class="indent" > </div><hr class="endfigure">
<!--l. 42--><p class="indent" > The new parameters can be added or a current parameters can be removed using <span
class="cmti-10x-x-109">ADD</span>
and <span
class="cmti-10x-x-109">REMOVE </span>buttons. Also the values of parameters can be changed in the table. The
adding and removing of the parameters in a library files is as shown in the Fig. <a
href="#x1-740034">8.4<!--tex4ht:ref: modeladd --></a> and
Fig. <a
href="#x1-740045">8.5<!--tex4ht:ref: modelremove --></a>
<!--l. 44--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-740034"></a>
<!--l. 46--><p class="noindent" ><img
src="figures/modeladd.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.4: </span><span
class="content">Adding the Paramter in a Library </span></div><!--tex4ht:label?: x1-740034 -->
<!--l. 49--><p class="indent" > </div><hr class="endfigure">
<!--l. 51--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-740045"></a>
<!--l. 53--><p class="noindent" ><img
src="figures/modelremove.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.5: </span><span
class="content">Removing a Parameter from a Library </span></div><!--tex4ht:label?: x1-740045 -->
<!--l. 56--><p class="indent" > </div><hr class="endfigure">
<!--l. 58--><p class="indent" > After the editing of the model library is done the file can be saved selecting the <span
class="cmti-10x-x-109">SAVE</span>
button. These libraries are saved in the <span
class="cmti-10x-x-109">Use Libraries </span>folder under <span
class="cmti-10x-x-109">DecviceModelLibrary </span>folder
in the project folder.
<h3 class="sectionHead"><span class="titlemark">8.2 </span> <a
id="x1-750008.2"></a>Editing Current Model Library</h3>
<!--l. 61--><p class="noindent" >The current model library can be saved using <span
class="cmti-10x-x-109">EDIT </span>option. On clicking the <span
class="cmti-10x-x-109">EDIT </span>button the
file dialog opens where all the library files are saved as shown in Fig. <a
href="#x1-750016">8.6<!--tex4ht:ref: modeledit --></a>
<!--l. 63--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-750016"></a>
<!--l. 65--><p class="noindent" ><img
src="figures/modeledit.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.6: </span><span
class="content">Editing Existing Model Library</span></div><!--tex4ht:label?: x1-750016 -->
<!--l. 68--><p class="indent" > </div><hr class="endfigure">
<!--l. 70--><p class="indent" > Further on clicking the <span
class="cmti-10x-x-109">SAVE </span>button the edited model library is saved in the <span
class="cmti-10x-x-109">Use</span>
<span
class="cmti-10x-x-109">Libraries </span>folder under <span
class="cmti-10x-x-109">DecviceModelLibrary </span>folder in the project folder.
<h3 class="sectionHead"><span class="titlemark">8.3 </span> <a
id="x1-760008.3"></a>Converting Library file to XML file</h3>
<!--l. 73--><p class="noindent" >eSim can not read the model library file in the .lib form. The file needs to be converted into
XML so as to make it readable and editable in model editor. Any new netlist that user wants
to use in the eSim need to be convertedinto xml before using it in a project. hence eSim
provides us to upload the new netlist which converts in into xml. on clicking UPLOAD button
the netlist can be uploaded from any location and further on saving the file the model library
can be saved in the Use Libraries folder under DecviceModelLibrary folder in the project
folder with different name.
<!--l. 1--><p class="indent" >
<h2 class="chapterHead"><span class="titlemark">Chapter 9</span><br /><a
id="x1-770009"></a>Sub-Circuit Builder</h2>
<!--l. 3--><p class="noindent" >Subcircuit is a way to implement hierarchical modeling. Once a subcircuit for a compo- nent
is created, it can be used in other circuits. eSim provides an easy way to create a subcircuit.
Thw Following Fig. <a
href="#x1-770011">9.1<!--tex4ht:ref: subcircuit_mainwin --></a> shows the window that is opened when the Sub-CIrcuit tool is chosen
from the toolbar. <hr class="figure"><div class="figure"
>
<a
id="x1-770011"></a>
<!--l. 8--><p class="noindent" ><img
src="figures/subcircuit_window.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.1: </span><span
class="content">Sub circuit Window</span></div><!--tex4ht:label?: x1-770011 -->
<!--l. 11--><p class="indent" > </div><hr class="endfigure">
<h3 class="sectionHead"><span class="titlemark">9.1 </span> <a
id="x1-780009.1"></a>Creating a Sub-Circuit</h3>
<!--l. 13--><p class="noindent" >Let us take an example of Half-adder circuit. To create a new sub circuit select the New
Subcircuit Schematic.Fig. <a
href="#x1-780012">9.2<!--tex4ht:ref: halfadder --></a> shows the half-adder circuit and Fig. <a
href="#x1-780023">9.3<!--tex4ht:ref: block --></a> shows the block of the
sub circuit included in the main circuit. <hr class="figure"><div class="figure"
>
<a
id="x1-780012"></a>
<!--l. 16--><p class="noindent" ><img
src="figures/half_adder.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.2: </span><span
class="content">Half-Adder Sub-circuit </span></div><!--tex4ht:label?: x1-780012 -->
<!--l. 19--><p class="indent" > </div><hr class="endfigure">
<!--l. 20--><p class="indent" > NOTE: All the input and output of the sub circuits are connected to the port component.
<hr class="figure"><div class="figure"
>
<a
id="x1-780023"></a>
<!--l. 23--><p class="noindent" ><img
src="figures/halfadderblock.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.3: </span><span
class="content">Half-Adder Sub-circuit Block </span></div><!--tex4ht:label?: x1-780023 -->
<!--l. 26--><p class="indent" > </div><hr class="endfigure">
<!--l. 27--><p class="indent" > After creating the schematic kicad netlist is generated as explained in section and convert
kicad to Ngspice where cir.out and .sub files are generated. The number of input and
output ports of the subcircuit is to matched with number of connections in the
main circuit. eSim provides this validation of mapping of the sub circuit ports.
Also the respective input and output ports can be checked by reading the .sub
file.
<a
id="x1-78003r151"></a>
<h2 class="appendixHead"><span class="titlemark">Appendix A</span><br /><a
id="x1-79000A"></a>Solved Examples</h2>
<h3 class="sectionHead"><span class="titlemark">A.1 </span> <a
id="x1-80000A.1"></a>Solved Examples</h3>
<!--l. 7--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">A.1.1 </span> <a
id="x1-81000A.1.1"></a>Basic RC Circuit</h4>
<!--l. 8--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-82000A.1.1"></a>Problem Statement-</h5>
<!--l. 8--><p class="noindent" >Plot the Input and Output Waveform of RC ckt where the input voltage (Vs) is
50Hz, 3V peak to peak. Value for Resistor (R) and Capacitor(C) is 1<span
class="cmmi-10x-x-109">k </span>and 1<span
class="cmmi-10x-x-109">uf</span>
respectively.
<!--l. 10--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-83000A.1.1"></a>Solution-</h5>
<!--l. 11--><p class="noindent" >Draw the schematic and label the nodes as shown in Fig. A.1a using the schematic editor.
Annotate the schematic using the Annotate tool from the top toolbar in Schematic editor.
Perform Electric Rules check using the Perform electric rules check tool from the top toolbar.
Ensure that there are no errors in the circuit schematic. Now generate Spice netlist for
simulation using the Generate Netlist tool from the top toolbar. This is shown
Fig. <a
href="#x1-830011">A.1<!--tex4ht:ref: rc_schematic --></a>.
<!--l. 18--><p class="indent" > Next step is to convert kicad netlist to ngspice netlist by click on icon Convert Kicad to
Ngspice. Then Fill the Analysis tab with Transisent option selected as given in Fig. <a
href="#x1-830022">A.2<!--tex4ht:ref: rc_netlistgeneration --></a>.
Enter start time = 0<span
class="cmmi-10x-x-109">ms</span>, step time = 1<span
class="cmmi-10x-x-109">ms</span>, stop time = 100<span
class="cmmi-10x-x-109">ms</span>.
<!--l. 22--><p class="indent" > Now Click on Sources Details Tab to Enter Sine Source Values as shown in
Fig. <a
href="#x1-830044">A.4<!--tex4ht:ref: rc_sourcedetailstab --></a>.
<!--l. 24--><p class="indent" > Then Press Convert Button which will generate Ngspice Netlist (rc.cir.out)
<!--l. 26--><p class="indent" > Now Click on Simulation icon to open Ngspice Plot and Python Plot shown in Fig. <a
href="#x1-830055">A.5<!--tex4ht:ref: rc_ngspiceplot --></a>
And Fig. <a
href="#x1-830066">A.6<!--tex4ht:ref: rc_pythonplot --></a>.
<!--l. 28--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-830011"></a>
<!--l. 30--><p class="noindent" ><img
src="figures/rc_schematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.1: </span><span
class="content">Schematic of RC circuit</span></div><!--tex4ht:label?: x1-830011 -->
<!--l. 33--><p class="indent" > </div><hr class="endfigure">
<!--l. 35--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-830022"></a>
<!--l. 37--><p class="noindent" ><img
src="figures/rc_netlistgeneration.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.2: </span><span
class="content">RC circuit Netlist Generation</span></div><!--tex4ht:label?: x1-830022 -->
<!--l. 40--><p class="indent" > </div><hr class="endfigure">
<!--l. 42--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-830033"></a>
<!--l. 44--><p class="noindent" ><img
src="figures/rc_analysistab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.3: </span><span
class="content">RC Circuit Analysis Insertor</span></div><!--tex4ht:label?: x1-830033 -->
<!--l. 47--><p class="indent" > </div><hr class="endfigure">
<!--l. 49--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-830044"></a>
<!--l. 51--><p class="noindent" ><img
src="figures/rc_sourcedetailstab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.4: </span><span
class="content">RC Source Details</span></div><!--tex4ht:label?: x1-830044 -->
<!--l. 54--><p class="indent" > </div><hr class="endfigure">
<!--l. 56--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-830055"></a>
<!--l. 58--><p class="noindent" ><img
src="figures/rc_ngspiceplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.5: </span><span
class="content">Ngspice Plot of RC circuit</span></div><!--tex4ht:label?: x1-830055 -->
<!--l. 61--><p class="indent" > </div><hr class="endfigure">
<!--l. 63--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-830066"></a>
<!--l. 65--><p class="noindent" ><img
src="figures/rc_pythonplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.6: </span><span
class="content">Python Plot of RC Circuit</span></div><!--tex4ht:label?: x1-830066 -->
<!--l. 68--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">A.1.2 </span> <a
id="x1-84000A.1.2"></a>Half Wave Rectifier</h4>
<!--l. 74--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-85000A.1.2"></a>Problem Statement-</h5>
<!--l. 74--><p class="noindent" >Plot the Input and Output Waveform of Half Wave Rectifier ckt where the input voltage (Vs)
is 50Hz, 2V peak to peak. Value for Resistor (R) is 1k respectively
<!--l. 76--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-86000A.1.2"></a>Solution-</h5>
<!--l. 77--><p class="noindent" >Draw the schematic and label the nodes as shown in Fig. <a
href="#x1-860017">A.7<!--tex4ht:ref: hwr_schematic --></a> using the schematic editor.
Annotate the schematic using the Annotate tool from the top toolbar in Schematic editor.
Perform Electric Rules check using the Perform electric rules check tool from the top toolbar.
Ensure that there are no errors in the circuit schematic. Now generate Spice netlist for
simulation using the Generate Netlist tool from the top toolbar. This is shown in
Fig. <a
href="#x1-860028">A.8<!--tex4ht:ref: hwr_netlistgeneration --></a>.
<!--l. 84--><p class="indent" > Next step is to convert kicad netlist to ngspice netlist by click on icon Convert Kicad to
Ngspice. Then Fill the Analysis tab with Transisent option selected as given in Fig. <a
href="#x1-860039">A.9<!--tex4ht:ref: hwr_analysistab --></a>.
Enter start time = 0<span
class="cmmi-10x-x-109">ms</span>, step time = 1<span
class="cmmi-10x-x-109">ms</span>, stop time = 100<span
class="cmmi-10x-x-109">ms</span>. Now Click on Sources Details
Tab to Enter Sine Source Values as shown in Fig. <a
href="#x1-8600410">A.10<!--tex4ht:ref: hwr_sourcedetailstab --></a>. Now Click on Device Model Tab to
ADD Diode model to the circuit shown in Fig. <a
href="#x1-8600511">A.11<!--tex4ht:ref: hwr_devicemodelingtab --></a>. (Note Details about Device Model is
expained in earlier chapter Model Builder.)
<!--l. 91--><p class="indent" > Then Press Convert Button which will generate Ngspice Netlist (Halfwave-Rectifier.cir.out)
<!--l. 93--><p class="indent" > Now Click on Simulation icon to open Ngspice Plot and Python Plot shown in Fig. <a
href="#x1-8600612">A.12<!--tex4ht:ref: hwr_ngspiceplot --></a>
And Fig. <a
href="#x1-8600713">A.13<!--tex4ht:ref: hwr_pythonplot --></a>
<!--l. 95--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-860017"></a>
<!--l. 97--><p class="noindent" ><img
src="figures/hwr_schematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.7: </span><span
class="content">Schematic of Halfwave Rectifier circuit</span></div><!--tex4ht:label?: x1-860017 -->
<!--l. 100--><p class="indent" > </div><hr class="endfigure">
<!--l. 102--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-860028"></a>
<!--l. 104--><p class="noindent" ><img
src="figures/hwr_netlistgeneration.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.8: </span><span
class="content">Halfwave Rectifier circuit Netlist Generation</span></div><!--tex4ht:label?: x1-860028 -->
<!--l. 107--><p class="indent" > </div><hr class="endfigure">
<!--l. 109--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-860039"></a>
<!--l. 111--><p class="noindent" ><img
src="figures/hwr_analysistab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.9: </span><span
class="content">Halfwave Rectifier Circuit Analysis Insertor</span></div><!--tex4ht:label?: x1-860039 -->
<!--l. 114--><p class="indent" > </div><hr class="endfigure">
<!--l. 116--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8600410"></a>
<!--l. 118--><p class="noindent" ><img
src="figures/hwr_sourcedetailstab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.10: </span><span
class="content">Halfwave Rectifier Source Details</span></div><!--tex4ht:label?: x1-8600410 -->
<!--l. 121--><p class="indent" > </div><hr class="endfigure">
<!--l. 123--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8600511"></a>
<!--l. 125--><p class="noindent" ><img
src="figures/hwr_devicemodelingtab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.11: </span><span
class="content">Device Modeling of Halfwave Rectifier circuit</span></div><!--tex4ht:label?: x1-8600511 -->
<!--l. 128--><p class="indent" > </div><hr class="endfigure">
<!--l. 130--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8600612"></a>
<!--l. 132--><p class="noindent" ><img
src="figures/hwr_ngspiceplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.12: </span><span
class="content">Ngspice Plot of Halfwave Rectifier circuit</span></div><!--tex4ht:label?: x1-8600612 -->
<!--l. 135--><p class="indent" > </div><hr class="endfigure">
<!--l. 137--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8600713"></a>
<!--l. 139--><p class="noindent" ><img
src="figures/hwr_pythonplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.13: </span><span
class="content">Python Plot of Halfwave Rectifier Circuit</span></div><!--tex4ht:label?: x1-8600713 -->
<!--l. 142--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">A.1.3 </span> <a
id="x1-87000A.1.3"></a>Inverting Amplifier</h4>
<!--l. 147--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-88000A.1.3"></a>Problem Statement-</h5>
<!--l. 148--><p class="noindent" >Plot the Input and Output Waveform of Inverting Amplifier ckt where the input voltage (Vs)
is 50<span
class="cmmi-10x-x-109">Hz</span>, 2<span
class="cmmi-10x-x-109">V </span>peak to peak and gain is 2.
<h5 class="subsubsectionHead"><a
id="x1-89000A.1.3"></a>Solution-</h5>
<!--l. 150--><p class="noindent" >Draw the schematic and label the nodes as shown in Fig. <a
href="#x1-8900114">A.14<!--tex4ht:ref: ia_schematic --></a>. using the schematic editor.
Annotate the schematic using the Annotate tool from the top toolbar in Schematic editor.
Perform Electric Rules check using the Perform electric rules check tool from the top toolbar.
Ensure that there are no errors in the circuit schematic. Now generate Spice netlist for
simulation using the Generate Netlist tool from the top toolbar. This is shown in
Fig. <a
href="#x1-8900215">A.15<!--tex4ht:ref: ia_netlistgeneration --></a>.
<!--l. 157--><p class="indent" > Next step is to convert kicad netlist to ngspice netlist by click on icon Convert Kicad to
Ngspice. Then Fill the Analysis tab with Transisent option selected as given in
Fig. <a
href="#x1-8900316">A.16<!--tex4ht:ref: ia_analysistab --></a>. Enter start time = 0<span
class="cmmi-10x-x-109">ms</span>, step time = 1<span
class="cmmi-10x-x-109">ms</span>, stop time = 100<span
class="cmmi-10x-x-109">ms</span>. Now
Click on Sources Details Tab to Enter Sine Source Values as shown in Fig. <a
href="#x1-8900417">A.17<!--tex4ht:ref: ia_sourcedetailstab --></a>.
Now Click on Subciruits Tab to ADD UA741 Subcircut to the circuit shown in
Fig. <a
href="#x1-8900518">A.18<!--tex4ht:ref: ia_subcircuitstab --></a> (Note Details about Subcircuit is expained in earlier chapter Subcircuit
Builder.)
<!--l. 164--><p class="indent" > Then Press Convert Button which will generate Ngspice Netlist (Inverting-Amplifier.cir.out)
<!--l. 166--><p class="indent" > Now Click on Simulation icon to open Ngspice Plot and Python Plot shown in Fig. <a
href="#x1-8900720">A.20<!--tex4ht:ref: ia_pythonplot --></a>
and Fig. <a
href="#x1-8900619">A.19<!--tex4ht:ref: ia_ngspiceplot --></a>.
<!--l. 168--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8900114"></a>
<!--l. 170--><p class="noindent" ><img
src="figures/ia_schematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.14: </span><span
class="content">Schematic of Inverting Amplifier circuit</span></div><!--tex4ht:label?: x1-8900114 -->
<!--l. 173--><p class="indent" > </div><hr class="endfigure">
<!--l. 175--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8900215"></a>
<!--l. 177--><p class="noindent" ><img
src="figures/ia_netlistgeneration.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.15: </span><span
class="content">Inverting Amplifier circuit Netlist Generation</span></div><!--tex4ht:label?: x1-8900215 -->
<!--l. 180--><p class="indent" > </div><hr class="endfigure">
<!--l. 182--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8900316"></a>
<!--l. 184--><p class="noindent" ><img
src="figures/ia_analysistab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.16: </span><span
class="content">Inverting Amplifier circuit Analysis Tab</span></div><!--tex4ht:label?: x1-8900316 -->
<!--l. 187--><p class="indent" > </div><hr class="endfigure">
<!--l. 189--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8900417"></a>
<!--l. 191--><p class="noindent" ><img
src="figures/ia_sourcedetailstab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.17: </span><span
class="content">Inverting Amplifier Source Details</span></div><!--tex4ht:label?: x1-8900417 -->
<!--l. 194--><p class="indent" > </div><hr class="endfigure">
<!--l. 196--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8900518"></a>
<!--l. 198--><p class="noindent" ><img
src="figures/ia_subcircuitstab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.18: </span><span
class="content">Sub Circuit Tab of Inverting Amplifier</span></div><!--tex4ht:label?: x1-8900518 -->
<!--l. 201--><p class="indent" > </div><hr class="endfigure">
<!--l. 203--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8900619"></a>
<!--l. 205--><p class="noindent" ><img
src="figures/ia_ngspiceplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.19: </span><span
class="content">Ngspice Plot of Inverting Amplifier circuit</span></div><!--tex4ht:label?: x1-8900619 -->
<!--l. 208--><p class="indent" > </div><hr class="endfigure">
<!--l. 210--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-8900720"></a>
<!--l. 212--><p class="noindent" ><img
src="figures/ia_pythonplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.20: </span><span
class="content">Python Plot of Inverting Amplifier Circuit</span></div><!--tex4ht:label?: x1-8900720 -->
<!--l. 215--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">A.1.4 </span> <a
id="x1-90000A.1.4"></a>Precision Rectifier</h4>
<!--l. 221--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-91000A.1.4"></a>Problem Statement-</h5>
<!--l. 222--><p class="noindent" >Plot the Input and Output Waveform of Precision Reectifier ckt where the input voltage (Vs)
is 50Hz, 3V peak to peak.
<!--l. 225--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-92000A.1.4"></a>Solution -</h5>
<!--l. 227--><p class="noindent" >Draw the schematic and label the nodes as shown in Fig. D.1a using the schematic editor.
Annotate the schematic using the Annotate tool from the top toolbar in Schematic editor.
Perform Electric Rules check using the Perform electric rules check tool from the top toolbar.
Ensure that there are no errors in the circuit schematic. Now generate Spice netlist for
simulation using the Generate Netlist tool from the top toolbar. This is shown in
Fig. <a
href="#x1-9200222">A.22<!--tex4ht:ref: pr_netlistgeneration --></a>.
<!--l. 234--><p class="indent" > Next step is to convert kicad netlist to ngspice netlist by click on icon Convert Kicad to
Ngspice. Then Fill the Analysis tab with Transisent option selected as given in
Fig. <a
href="#x1-9200323">A.23<!--tex4ht:ref: pr_analysistab --></a>. Enter start time = 0ms, step time = 1 ms, stop time = 100 ms. Now Click
on Sources Details Tab to Enter Sine Source Values as shown in Fig. <a
href="#x1-9200424">A.24<!--tex4ht:ref: pr_sourcedetailstab --></a>. Now
Click on Device Model Tab to ADD Diode model to the circuit shown in Fig. <a
href="#x1-9200525">A.25<!--tex4ht:ref: pr_devicemodelingtab --></a>.
(Note Details about Device Model is expained in earlier chapter Model Builder.)
Then Click on Subciruits Tab to ADD UA741 Subcircut to the circuit shown in
Fig. <a
href="#x1-9200626">A.26<!--tex4ht:ref: pr_subcircuitstab --></a>. (Note Details about Subcircuit is expained in earlier chapter Subcircuit
Builder.)
<!--l. 243--><p class="indent" > Then Press Convert Button which will generate Ngspice Netlist (Precision-Rectifier.cir.out)
<!--l. 245--><p class="indent" > Now Click on Simulation icon to open Ngspice Plot and Python Plot shown in Fig. <a
href="#x1-9200727">A.27<!--tex4ht:ref: pr_ngspiceplot --></a>
and Fig. <a
href="#x1-9200828">A.28<!--tex4ht:ref: pr_pythonplot --></a>.
<!--l. 247--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9200121"></a>
<!--l. 249--><p class="noindent" ><img
src="figures/pr_schematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.21: </span><span
class="content">Schematic of Precision Rectifier circuit</span></div><!--tex4ht:label?: x1-9200121 -->
<!--l. 252--><p class="indent" > </div><hr class="endfigure">
<!--l. 254--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9200222"></a>
<!--l. 256--><p class="noindent" ><img
src="figures/pr_netlistgeneration.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.22: </span><span
class="content">Precision Rectifier circuit Netlist Generation</span></div><!--tex4ht:label?: x1-9200222 -->
<!--l. 259--><p class="indent" > </div><hr class="endfigure">
<!--l. 261--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9200323"></a>
<!--l. 263--><p class="noindent" ><img
src="figures/pr_analysistab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.23: </span><span
class="content">Precision Rectifier Circuit Analysis Insertor</span></div><!--tex4ht:label?: x1-9200323 -->
<!--l. 266--><p class="indent" > </div><hr class="endfigure">
<!--l. 268--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9200424"></a>
<!--l. 270--><p class="noindent" ><img
src="figures/pr_sourcedetailstab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.24: </span><span
class="content">Precision Rectifier Source Details</span></div><!--tex4ht:label?: x1-9200424 -->
<!--l. 273--><p class="indent" > </div><hr class="endfigure">
<!--l. 275--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9200525"></a>
<!--l. 277--><p class="noindent" ><img
src="figures/pr_devicemodelingtab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.25: </span><span
class="content">Device Modelling of Precision Rectifier circuit</span></div><!--tex4ht:label?: x1-9200525 -->
<!--l. 280--><p class="indent" > </div><hr class="endfigure">
<!--l. 282--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9200626"></a>
<!--l. 284--><p class="noindent" ><img
src="figures/pr_subcircuitstab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.26: </span><span
class="content">Precision Rectifier Sub-circuit</span></div><!--tex4ht:label?: x1-9200626 -->
<!--l. 287--><p class="indent" > </div><hr class="endfigure">
<!--l. 289--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9200727"></a>
<!--l. 291--><p class="noindent" ><img
src="figures/pr_ngspiceplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.27: </span><span
class="content">Ngspice Plot of Precision Rectifier circuit</span></div><!--tex4ht:label?: x1-9200727 -->
<!--l. 294--><p class="indent" > </div><hr class="endfigure">
<!--l. 296--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9200828"></a>
<!--l. 298--><p class="noindent" ><img
src="figures/pr_pythonplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.28: </span><span
class="content">Python Plot of Precision Rectifier Circuit</span></div><!--tex4ht:label?: x1-9200828 -->
<!--l. 301--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">A.1.5 </span> <a
id="x1-93000A.1.5"></a>Half Adder Example</h4>
<!--l. 307--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-94000A.1.5"></a>Problem Statement-</h5>
<!--l. 307--><p class="noindent" >Plot the Input and Output Waveform of Half Adder ckt.
<!--l. 309--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-95000A.1.5"></a>Solution -</h5>
<!--l. 311--><p class="noindent" >Draw the schematic and label the nodes as shown in Fig. <a
href="#x1-9500129">A.29<!--tex4ht:ref: ha_schematic --></a> using the schematic editor.
[Note : To create any Digital Circuits ADCs and DACs must be connected to input and
output of the circuit.] Annotate the schematic using the Annotate tool from the top toolbar in
Schematic editor. Perform Electric Rules check using the Perform electric rules check tool
from the top toolbar. Ensure that there are no errors in the circuit schematic. Now generate
Spice netlist for simulation using the Generate Netlist tool from the top toolbar. This is
shown in Fig. <a
href="#x1-9500230">A.30<!--tex4ht:ref: ha_netlistgeneration --></a>.
<!--l. 319--><p class="indent" > Next step is to convert kicad netlist to ngspice netlist by click on icon Convert Kicad to
Ngspice. Then Fill the Analysis tab with Transisent option selected as given in Fig. <a
href="#x1-9500331">A.31<!--tex4ht:ref: ha_analysistab --></a>.
Enter start time = 0<span
class="cmmi-10x-x-109">ms</span>, step time = 1<span
class="cmmi-10x-x-109">ms</span>, stop time = 100<span
class="cmmi-10x-x-109">ms</span>. Now Click on Sources Details
Tab to Enter Sine Source Values as shown in Fig. <a
href="#x1-9500432">A.32<!--tex4ht:ref: ha_sourcedetailstab --></a>. Click on Ngspice Model Tab and
Enter the Details of Ngspice Models else keep it empty where it will select default values as
shown in Fig. <a
href="#x1-9500533">A.33<!--tex4ht:ref: ha_ngspicemodeltab --></a> Then Click on Subciruits Tab to ADD half-adder Subcircut to the circuit
shown in Fig. <a
href="#x1-9500634">A.34<!--tex4ht:ref: ha_subcircuitstab --></a>. (Note Details about Subcircuit is expained in earlier chapter Subcircuit
Builder.)
<!--l. 327--><p class="indent" > Then Press Convert Button which will generate Ngspice Netlist (Half-Adder.cir.out)
<!--l. 329--><p class="indent" > Now Click on Simulation icon to open Ngspice Plot and Python Plot shown in Fig. <a
href="#x1-9500735">A.35<!--tex4ht:ref: ha_ngspiceplot --></a>
and Fig. <a
href="#x1-9500836">A.36<!--tex4ht:ref: ha_pythonplot --></a>.
<!--l. 331--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9500129"></a>
<!--l. 333--><p class="noindent" ><img
src="figures/ha_schematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.29: </span><span
class="content">Schematic of Half Adder circuit</span></div><!--tex4ht:label?: x1-9500129 -->
<!--l. 336--><p class="indent" > </div><hr class="endfigure">
<!--l. 338--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9500230"></a>
<!--l. 340--><p class="noindent" ><img
src="figures/ha_netlistgeneration.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.30: </span><span
class="content">Half Adder circuit Netlist Generation</span></div><!--tex4ht:label?: x1-9500230 -->
<!--l. 343--><p class="indent" > </div><hr class="endfigure">
<!--l. 345--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9500331"></a>
<!--l. 347--><p class="noindent" ><img
src="figures/ha_analysistab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.31: </span><span
class="content">Half Adder Circuit Analysis Insertor</span></div><!--tex4ht:label?: x1-9500331 -->
<!--l. 350--><p class="indent" > </div><hr class="endfigure">
<!--l. 352--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9500432"></a>
<!--l. 354--><p class="noindent" ><img
src="figures/ha_sourcedetailstab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.32: </span><span
class="content">Half Adder Source Details</span></div><!--tex4ht:label?: x1-9500432 -->
<!--l. 357--><p class="indent" > </div><hr class="endfigure">
<!--l. 359--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9500533"></a>
<!--l. 361--><p class="noindent" ><img
src="figures/ha_ngspicemodeltab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.33: </span><span
class="content">Ngspice Plot of Half Adder circuit</span></div><!--tex4ht:label?: x1-9500533 -->
<!--l. 364--><p class="indent" > </div><hr class="endfigure">
<!--l. 366--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9500634"></a>
<!--l. 368--><p class="noindent" ><img
src="figures/ha_subcircuitstab.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.34: </span><span
class="content">Ngspice Plot of Half Adder circuit</span></div><!--tex4ht:label?: x1-9500634 -->
<!--l. 371--><p class="indent" > </div><hr class="endfigure">
<!--l. 373--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9500735"></a>
<!--l. 375--><p class="noindent" ><img
src="figures/ha_ngspiceplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.35: </span><span
class="content">Ngspice Plot of Half Adder circuit</span></div><!--tex4ht:label?: x1-9500735 -->
<!--l. 378--><p class="indent" > </div><hr class="endfigure">
<!--l. 380--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-9500836"></a>
<!--l. 382--><p class="noindent" ><img
src="figures/ha_pythonplot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure A.36: </span><span
class="content">Python Plot of Half Adder Circuit</span></div><!--tex4ht:label?: x1-9500836 -->
<!--l. 385--><p class="indent" > </div><hr class="endfigure">
</body></html>
|