1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html >
<head><title>eSim Manual</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="generator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
<meta name="originator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
<!-- html -->
<meta name="src" content="esim.tex">
<meta name="date" content="2015-09-15 14:59:00">
<link rel="stylesheet" type="text/css" href="esim.css">
</head><body
>
<div class="center"
>
<!--l. 1--><p class="noindent" >
<!--l. 2--><p class="noindent" ><span
class="cmbx-12x-x-207">eSim</span><br /><br />
<span
class="cmbx-12x-x-144">An open source EDA tool for circuit design,</span>
<span
class="cmbx-12x-x-144">simulation, analysis and PCB design</span><br />
<img
src="figures/logo-trimmed.png" alt="PIC"
>
<span
class="cmbx-12x-x-144">eSim User Manual</span><br />
<span
class="cmr-10">version 1.0.0</span><br />
<span
class="cmbx-10">Prepared By:</span><br />
<span
class="cmr-10">eSim Team</span><br />
<span
class="cmr-10">FOSSEE at IIT,Bombay</span>
<!--l. 17--><p class="noindent" ><img
src="figures/iitblogo.png" alt="PIC"
><br />
<span
class="cmr-10">Indian Institute of Technology Bombay</span><br />
<img
src="esim0x.png" alt="○BY:" class="oalign" > <img
src="esim1x.png" alt="○$\" class="oalign" > <img
src="esim2x.png" alt="○=" class="oalign" > <br />
<span
class="cmr-10">August 2015</span></div>
<h2 class="likechapterHead"><a
id="x1-1000"></a>Contents</h2> <div class="tableofcontents">
<span class="chapterToc" >1 <a
href="#x1-20001" id="QQ2-1-2">Introduction</a></span>
<br /> <span class="chapterToc" >2 <a
href="#x1-30002" id="QQ2-1-3">Installing eSim</a></span>
<br /> <span class="chapterToc" >3 <a
href="#x1-40003" id="QQ2-1-4">Architecture of eSim</a></span>
<br />  <span class="sectionToc" >3.1 <a
href="#x1-50003.1" id="QQ2-1-5">Modules used in eSim</a></span>
<br />   <span class="subsectionToc" >3.1.1 <a
href="#x1-60003.1.1" id="QQ2-1-6">Eeschema</a></span>
<br />   <span class="subsectionToc" >3.1.2 <a
href="#x1-70003.1.2" id="QQ2-1-7">CvPcb</a></span>
<br />   <span class="subsectionToc" >3.1.3 <a
href="#x1-80003.1.3" id="QQ2-1-8">Pcbnew</a></span>
<br />   <span class="subsectionToc" >3.1.4 <a
href="#x1-90003.1.4" id="QQ2-1-9">KiCad to Ngspice converter</a></span>
<br />   <span class="subsectionToc" >3.1.5 <a
href="#x1-100003.1.5" id="QQ2-1-10">Model Builder</a></span>
<br />   <span class="subsectionToc" >3.1.6 <a
href="#x1-110003.1.6" id="QQ2-1-11">Subcircuit Builder</a></span>
<br />   <span class="subsectionToc" >3.1.7 <a
href="#x1-120003.1.7" id="QQ2-1-12">Ngspice</a></span>
<br />  <span class="sectionToc" >3.2 <a
href="#x1-130003.2" id="QQ2-1-13">Work flow of eSim</a></span>
<br /> <span class="chapterToc" >4 <a
href="#x1-140004" id="QQ2-1-15">Getting Started</a></span>
<br />  <span class="sectionToc" >4.1 <a
href="#x1-150004.1" id="QQ2-1-16">eSim Main Window</a></span>
<br />   <span class="subsectionToc" >4.1.1 <a
href="#x1-160004.1.1" id="QQ2-1-17">How to launch eSim in Ubuntu?</a></span>
<br />   <span class="subsectionToc" >4.1.2 <a
href="#x1-170004.1.2" id="QQ2-1-19">Main-GUI</a></span>
<br /> <span class="chapterToc" >5 <a
href="#x1-280005" id="QQ2-1-33">Schematic Creation</a></span>
<br />  <span class="sectionToc" >5.1 <a
href="#x1-290005.1" id="QQ2-1-34">Familiarizing the Schematic Editor interface</a></span>
<br />   <span class="subsectionToc" >5.1.1 <a
href="#x1-300005.1.1" id="QQ2-1-36">Top menu bar</a></span>
<br />   <span class="subsectionToc" >5.1.2 <a
href="#x1-310005.1.2" id="QQ2-1-38">Top toolbar</a></span>
<br />   <span class="subsectionToc" >5.1.3 <a
href="#x1-320005.1.3" id="QQ2-1-40">Toolbar on the right</a></span>
<br />   <span class="subsectionToc" >5.1.4 <a
href="#x1-330005.1.4" id="QQ2-1-42">Toolbar on the left</a></span>
<br />   <span class="subsectionToc" >5.1.5 <a
href="#x1-340005.1.5" id="QQ2-1-44">Hotkeys</a></span>
<br />  <span class="sectionToc" >5.2 <a
href="#x1-350005.2" id="QQ2-1-45">Schematic creation for simulation</a></span>
<br />   <span class="subsectionToc" >5.2.1 <a
href="#x1-360005.2.1" id="QQ2-1-47">Selection and placement of components</a></span>
<br />   <span class="subsectionToc" >5.2.2 <a
href="#x1-370005.2.2" id="QQ2-1-51">Wiring the circuit</a></span>
<br />   <span class="subsectionToc" >5.2.3 <a
href="#x1-380005.2.3" id="QQ2-1-53">Assigning values to components</a></span>
<br />   <span class="subsectionToc" >5.2.4 <a
href="#x1-390005.2.4" id="QQ2-1-55">Annotation and ERC</a></span>
<br />   <span class="subsectionToc" >5.2.5 <a
href="#x1-400005.2.5" id="QQ2-1-59">Netlist generation</a></span>
<br /> <span class="chapterToc" >6 <a
href="#x1-410006" id="QQ2-1-61">PCB Design</a></span>
<br />  <span class="sectionToc" >6.1 <a
href="#x1-420006.1" id="QQ2-1-62">Schematic creation for PCB design</a></span>
<br />   <span class="subsectionToc" >6.1.1 <a
href="#x1-430006.1.1" id="QQ2-1-64">Netlist generation for PCB</a></span>
<br />   <span class="subsectionToc" >6.1.2 <a
href="#x1-440006.1.2" id="QQ2-1-66">Mapping of components using Footprint Editor</a></span>
<br />   <span class="subsectionToc" >6.1.3 <a
href="#x1-450006.1.3" id="QQ2-1-67">Familiarising the Footprint Editor tool</a></span>
<br />   <span class="subsectionToc" >6.1.4 <a
href="#x1-470006.1.4" id="QQ2-1-71">Viewing footprints in 2D and 3D</a></span>
<br />   <span class="subsectionToc" >6.1.5 <a
href="#x1-480006.1.5" id="QQ2-1-75">Mapping of components in the RC circuit</a></span>
<br />  <span class="sectionToc" >6.2 <a
href="#x1-490006.2" id="QQ2-1-77">Creation of PCB layout</a></span>
<br />   <span class="subsectionToc" >6.2.1 <a
href="#x1-500006.2.1" id="QQ2-1-78">Familiarizing the Layout Editor tool</a></span>
<br />   <span class="subsectionToc" >6.2.2 <a
href="#x1-520006.2.2" id="QQ2-1-82">Hotkeys</a></span>
<br />   <span class="subsectionToc" >6.2.3 <a
href="#x1-530006.2.3" id="QQ2-1-83">PCB design example using RC circuit</a></span>
<br /> <span class="chapterToc" >7 <a
href="#x1-540007" id="QQ2-1-98">Model Editor</a></span>
<br />  <span class="sectionToc" >7.1 <a
href="#x1-550007.1" id="QQ2-1-100">Creating New Model Library </a></span>
<br />  <span class="sectionToc" >7.2 <a
href="#x1-560007.2" id="QQ2-1-105">Editing Current Model Library</a></span>
<br />  <span class="sectionToc" >7.3 <a
href="#x1-570007.3" id="QQ2-1-107">Uploading external .lib file to eSim repository</a></span>
<br /> <span class="chapterToc" >8 <a
href="#x1-580008" id="QQ2-1-108">SubCircuit Builder</a></span>
<br />  <span class="sectionToc" >8.1 <a
href="#x1-590008.1" id="QQ2-1-110">Creating a SubCircuit</a></span>
<br />  <span class="sectionToc" >8.2 <a
href="#x1-600008.2" id="QQ2-1-118">Edit a Subcircuit</a></span>
<br /> <span class="chapterToc" >9 <a
href="#x1-610009" id="QQ2-1-119">Solved Examples</a></span>
<br />  <span class="sectionToc" >9.1 <a
href="#x1-620009.1" id="QQ2-1-120">Solved Examples</a></span>
<br />   <span class="subsectionToc" >9.1.1 <a
href="#x1-630009.1.1" id="QQ2-1-121">Basic RC Circuit</a></span>
<br />   <span class="subsectionToc" >9.1.2 <a
href="#x1-660009.1.2" id="QQ2-1-136">Half Wave Rectifier</a></span>
<br />   <span class="subsectionToc" >9.1.3 <a
href="#x1-690009.1.3" id="QQ2-1-143">Precision Rectifier</a></span>
<br />   <span class="subsectionToc" >9.1.4 <a
href="#x1-720009.1.4" id="QQ2-1-150">Inverting Amplifier</a></span>
<br />   <span class="subsectionToc" >9.1.5 <a
href="#x1-750009.1.5" id="QQ2-1-157">Half Adder Example</a></span>
<br /> <span class="chapterToc" > <a
href="#Q1-1-166">References </a></span>
</div>
<h2 class="chapterHead"><span class="titlemark">Chapter 1</span><br /><a
id="x1-20001"></a>Introduction</h2> Electronic systems are an integral part of human life. They have
simplified our lives to a great extent. Starting from small systems made of a few
discrete components to the present day integrated circuits (ICs) with millions of
logic gates, electronic systems have undergone a sea change. As a result, design of
electronic systems too have become extremely difficult and time consuming. Thanks to
a host of computer aided design tools, we have been able to come up with quick
and efficient designs. These are called <span
class="cmtt-10x-x-109">Electronic Design Automation </span>or <span
class="cmtt-10x-x-109">EDA</span>
<a
id="dx1-2001"></a>tools.
<!--l. 20--><p class="noindent" >Let us see the steps involved in EDA.<a
id="dx1-2002"></a> In the first stage, the specifications of the system are
laid out. These specifications are then converted to a design. The design could be in
the form of a circuit schematic, logical description using an HDL language, etc.
The design is then simulated and re-designed, if needed, to achieve the desired
results. Once simulation achieves the specifications, the design is either converted to
a PCB, a chip layout, or ported to an FPGA. The final product is again tested
for specifications. The whole cycle is repeated until desired results are obtained
<span class="cite"> [<a
href="#Xeda">9</a>]</span>.
<!--l. 31--><p class="indent" > A person who builds an electronic system has to first design the circuit, produce a virtual
representation of it through a schematic for easy comprehension, simulate it and finally
convert it into a Printed Circuit Board (PCB). <a
id="dx1-2003"></a>There are various tools available that will help
us do this. Some of the popular EDA tools are those of <span
class="cmtt-10x-x-109">Cadence</span>, <span
class="cmtt-10x-x-109">Synopys</span>, <span
class="cmtt-10x-x-109">Mentor Graphics</span>
and <span
class="cmtt-10x-x-109">Xilinx</span>. Although these are fairly comprehensive and high end, their licenses are
expensive, being proprietary.
<!--l. 40--><p class="indent" > There are some free and open source EDA tools like <span
class="cmtt-10x-x-109">gEDA</span>, <span
class="cmtt-10x-x-109">KiCad </span>and <span
class="cmtt-10x-x-109">Ngspice</span>. The main
drawback of these open source tools is that they are not comprehensive. Some of them are
capable of PCB design (e.g. <span
class="cmtt-10x-x-109">KiCad</span>) while some of them are capable of performing simulations
(e.g. <span
class="cmtt-10x-x-109">gEDA</span>). To the best of our knowledge, there is no open source software that can perform
circuit design, simulation and layout design together. eSim is capable of doing all of the
above.
<!--l. 49--><p class="indent" > eSim is a free and open source EDA tool. It is an acronym for <span
class="cmbx-10x-x-109">E</span>lectronics <span
class="cmbx-10x-x-109">Sim</span>ulation.
eSim is created using open source software packages, such as KiCad, Ngspice and Python. <a
id="dx1-2004"></a><a
id="dx1-2005"></a>
<a
id="dx1-2006"></a>Using eSim, one can create circuit schematics, perform simulations and design PCB
layouts. It can create or edit new device models, and create or edit subcircuits for
simulation.
<!--l. 57--><p class="indent" > Because of these reasons, eSim is expected to be useful for students, teachers and other
professionals who would want to study and/or design electronic systems. eSim is also useful
for entrepreneurs and small scale enterprises who do not have the capability to invest in
heavily priced proprietary tools.
<!--l. 63--><p class="indent" > This book introduces eSim to the reader and illustrates all the features of eSim with
examples. Chapter <a
href="#x1-30002">2<!--tex4ht:ref: chap2 --></a> gives step by step instructions to install eSim on a typical computer
system and to validate the installation. The software architecture of eSim is presented in
Chapter <a
href="#x1-40003">3<!--tex4ht:ref: chap3 --></a>. Chapter <a
href="#x1-140004">4<!--tex4ht:ref: chap4 --></a> gets the user started with eSim. It takes them through a tour
of eSim with the help of a simple RC circuit example. Chapter 5 illustrates how
to simulate circuits. Chapter 6 explains PCB design using eSim, in detail. The
advanced features of eSim such as Model Builder covered in Chapter 7 and Sub
circuiting is covered in Chapter 8. Chapter <a
href="#x1-610009">9<!--tex4ht:ref: chap5 --></a> illustrates how to use eSim for solving
problems.
<!--l. 73--><p class="indent" > The following convention has been adopted throughout this manual.All the
menu names, options under each menu item, tool names, certain points to be noted,
etc., are given in <span
class="cmti-10x-x-109">italics</span>. Some keywords, names of certain windows/dialog boxes,
names of some files/projects/folders, messages displayed during an activity, names
of websites, component references, etc., are given in <span
class="cmtt-10x-x-109">typewriter </span>font. Some key
presses, e.g. <span
class="cmtt-10x-x-109">Enter </span>key, <span
class="cmtt-10x-x-109">F1 </span>key, <span
class="cmtt-10x-x-109">y </span>for yes, etc., are also mentioned in <span
class="cmtt-10x-x-109">typewriter</span>
font.
<h2 class="chapterHead"><span class="titlemark">Chapter 2</span><br /><a
id="x1-30002"></a>Installing eSim</h2>
<dl class="enumerate"><dt class="enumerate">
1. </dt><dd
class="enumerate"><span
class="cmbx-10x-x-109">eSim installation in Ubuntu:</span><br
class="newline" />After downloading the zip file from https://github.com/FOSSEE/eSim to a local
directory unpack it using:<br
class="newline" />      <span
class="cmbx-10x-x-109">$ unzip eSim.zip </span><br
class="newline" />Now change directories in to the top-level source directory (where this INSTALL
file can be found).
<!--l. 13--><p class="noindent" >To install eSim and other dependecies run the following command. <br
class="newline" />      <span
class="cmbx-10x-x-109">$ ../install-linux.sh –install </span><br
class="newline" />Above script will install eSim along with dependencies.
<!--l. 19--><p class="noindent" >eSim will be installed to /opt/eSim
<!--l. 21--><p class="noindent" >To run eSim you can directly run it from terminal as <br
class="newline" />      <span
class="cmbx-10x-x-109">$ esim </span><br
class="newline" />or you can double click on eSim icon created on desktop after installation.</dd></dl>
<h2 class="chapterHead"><span class="titlemark">Chapter 3</span><br /><a
id="x1-40003"></a>Architecture of eSim</h2>
<!--l. 6--><p class="noindent" >eSim is a CAD <a
id="dx1-4001"></a>tool that helps electronic system designers to design, test and analyse their
circuits. But the important feature of this tool is that it is open source and hence the user can
modify the source as per his/her need. The software provides a generic, modular and
extensible platform for experiment with electronic circuits. This software runs on all
Ubuntu Linux distributions and some flavours of Windows. It uses <span
class="cmtt-10x-x-109">Python</span>, <span
class="cmtt-10x-x-109">KiCad </span>and
<span
class="cmtt-10x-x-109">Ngspice</span>.
<!--l. 13--><p class="indent" > The objective behind the development of eSim is to provide an open source EDA solution
for electronics and electrical engineers. The software should be capable of performing
schematic creation, PCB design and circuit simulation (analog, digital and mixed signal). It
should provide facilities to create new models and components. The architecture of eSim has
been designed by keeping these objectives in mind.
<h3 class="sectionHead"><span class="titlemark">3.1 </span> <a
id="x1-50003.1"></a>Modules used in eSim</h3>
<!--l. 21--><p class="noindent" >Various open-source tools have been used for the underlying build-up of eSim. In this section
we will give a brief idea about all the modules used in eSim.
<!--l. 23--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.1 </span> <a
id="x1-60003.1.1"></a>Eeschema</h4>
<a
id="dx1-6001"></a>
<a
id="dx1-6002"></a>
<!--l. 24--><p class="noindent" >Eeschema is an integrated software where all functions of circuit drawing, control, layout,
library management and access to the PCB design software are carried out. It is the
schematic editor tool used in KiCad <span class="cite"> [<a
href="#Xeeschema">11</a>]</span>. Eeschema is intended to work with PCB layout
software such as Pcbnew. It provides netlist that describes the electrical connections of the
PCB. Eeschema also integrates a component editor which allows the creation, editing and
visualization of components. It also allows the user to effectively handle the symbol
libraries i.e; import, export, addition and deletion of library components. Eeschema
also integrates the following additional but essential functions needed for a modern
schematic capture software: <a
id="x1-6003r1"></a>1. Design rules check <a
id="dx1-6004"></a>(<span
class="cmtt-10x-x-109">DRC</span>) for the automatic control of
incorrect connections and inputs of components left unconnected. <a
id="x1-6005r2"></a>2. Generation of
layout files in <span
class="cmtt-10x-x-109">POSTSCRIPT</span> <a
id="dx1-6006"></a>or <span
class="cmtt-10x-x-109">HPGL</span> <a
id="dx1-6007"></a>format. <a
id="x1-6008r3"></a>3. Generation of layout files printable via
printer. <a
id="x1-6009r4"></a>4. Bill of material generation. <a
id="x1-6010r5"></a>5. Netlist generation for PCB layout or for
simulation.
This module is indicated by the label 1 in Fig. <a
href="#x1-130011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 45--><p class="indent" > As Eeschema is originally intended for PCB Design, there are no fictitious
components<span class="footnote-mark"><a
href="esim2.html#fn1x3"><sup class="textsuperscript">1</sup></a></span><a
id="x1-6011f1"></a>
such as voltage or current sources. Thus, we have added a new library for different types of
voltage and current sources such as sine, pulse and square wave. We have also built a library
which gives printing and plotting solutions. This extension, developed by us for eSim, is
indicated by the label 2 in Fig. <a
href="#x1-130011">3.1<!--tex4ht:ref: blockd --></a>.
<h4 class="subsectionHead"><span class="titlemark">3.1.2 </span> <a
id="x1-70003.1.2"></a>CvPcb</h4>
<a
id="dx1-7001"></a>
<!--l. 58--><p class="noindent" >CvPcb is a tool that allows the user to associate components in the schematic to component
footprints when designing the printed circuit board. CvPcb is the footprint editor tool in
KiCad <span class="cite"> [<a
href="#Xeeschema">11</a>]</span>. Typically the netlist file generated by Eeschema does not specify which printed
circuit board footprint is associated with each component in the schematic. However, this is
not always the case as component footprints can be associated during schematic capture by
setting the component’s footprint field. CvPcb provides a convenient method of associating
footprints to components. It provides footprint list filtering, footprint viewing, and 3D
component model viewing to help ensure that the correct footprint is associated with each
component. Components can be assigned to their corresponding footprints manually or
automatically by creating equivalence files. Equivalence files are look up tables
associating each component with its footprint. This interactive approach is simpler
and less error prone than directly associating footprints in the schematic editor.
This is because CvPcb not only allows automatic association, but also allows to
see the list of available footprints and displays them on the screen to ensure the
correct footprint is being associated. This module is indicated by the label 3 in
Fig. <a
href="#x1-130011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 80--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.3 </span> <a
id="x1-80003.1.3"></a>Pcbnew</h4>
<a
id="dx1-8001"></a>
<!--l. 81--><p class="noindent" >Pcbnew is a powerful printed circuit board software tool. It is the layout editor tool
used in KiCad <span class="cite"> [<a
href="#Xeeschema">11</a>]</span>. It is used in association with the schematic capture software
Eeschema, which provides the netlist. Netlist describes the electrical connections of
the circuit. CvPcb is used to assign each component, in the netlist produced by
Eeschema, to a module that is used by Pcbnew. The features of Pcbnew are given
below:
<ul class="itemize1">
<li class="itemize">It manages libraries of modules. Each module is a drawing of the physical
component including its footprint<a
id="dx1-8002"></a> - the layout of pads providing connections to the
component. The required modules are automatically loaded during the reading of
the netlist produced by CvPcb.
</li>
<li class="itemize">Pcbnew integrates automatically and immediately any circuit modification by
removal of any erroneous tracks, addition of new components, or by modifying
any value (and under certain conditions any reference) of old or new modules,
according to the electrical connections appearing in the schematic.
</li>
<li class="itemize">This tool provides a rats nest display, a hairline connecting the pads of modules
connected on the schematic. These connections move dynamically as track and
module movements are made.
</li>
<li class="itemize">It has an active Design Rules Check (<span
class="cmtt-10x-x-109">DRC</span>) which automatically indicates any error
of track layout in real time.
</li>
<li class="itemize">It automatically generates a copper plane, with or without thermal breaks on the
pads.
</li>
<li class="itemize">It has a simple but effective auto router to assist in the production of the
circuit. An export/import in <span
class="cmtt-10x-x-109">SPECCTRA </span>dsn format allows to use more advanced
auto-routers.
</li>
<li class="itemize">It provides options specifically for the production of ultra high frequency circuits
(such as pads of trapezoidal and complex form, automatic layout of coils on the
printed circuit).
</li>
<li class="itemize">Pcbnew displays the elements (tracks, pads, texts, drawings and more) as actual size
and according to personal preferences such as:
<ul class="itemize2">
<li class="itemize">display in full or outline.
</li>
<li class="itemize">display the track/pad clearance.</li></ul>
</li></ul>
<!--l. 121--><p class="noindent" >This module is indicated by the label 4 in Fig. <a
href="#x1-130011">3.1<!--tex4ht:ref: blockd --></a>.
<h4 class="subsectionHead"><span class="titlemark">3.1.4 </span> <a
id="x1-90003.1.4"></a>KiCad to Ngspice converter</h4>
<!--l. 124--><p class="noindent" >We can provide analysis parameters, and the source details through this module. It also
allows us to add and edit the device models and subcircuits, included in the circuit
schematic. Finally, this module facilitates the conversion of KiCad netlist to Ngspice
compatible ones. It is developed by us for eSim and it is indicated by the label 7 in
Fig. <a
href="#x1-130011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 149--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.5 </span> <a
id="x1-100003.1.5"></a>Model Builder</h4>
<a
id="dx1-10001"></a>
<!--l. 150--><p class="noindent" >This tool provides the facility to define a new model for devices such as, <a
id="x1-10002r1"></a>1. Diode <a
id="x1-10003r2"></a>2. Bipolar
Junction Transistor (BJT) <a
id="x1-10004r3"></a>3. Metal Oxide Semiconductor Field Effect Transistor
(MOSFET) <a
id="x1-10005r4"></a>4. Junction Field Effect Transistor (JFET) <a
id="x1-10006r5"></a>5. IGBT and <a
id="x1-10007r6"></a>6. Magnetic
core.
This module also helps edit existing models. It is developed by us for eSim and it is indicated
by the label 5 in Fig. <a
href="#x1-130011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 164--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.6 </span> <a
id="x1-110003.1.6"></a>Subcircuit Builder</h4>
<a
id="dx1-11001"></a>
<!--l. 164--><p class="noindent" >This module allows the user to create a subcircuit for a component. Once the subcircuit for a
component is created, the user can use it in other circuits. It has the facility to define new
components such as, Op-amps and IC-555. This component also helps edit existing
subcircuits. This module is developed by us for eSim and it is indicated by the label 6 in
Fig. <a
href="#x1-130011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 172--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">3.1.7 </span> <a
id="x1-120003.1.7"></a>Ngspice</h4>
<a
id="dx1-12001"></a>
<!--l. 173--><p class="noindent" >Ngspice is a general purpose circuit simulation program for nonlinear dc, nonlinear transient,
and linear ac analysis <span class="cite"> [<a
href="#Xngspice-web">12</a>]</span>. Circuits may contain resistors, capacitors, inductors, mutual
inductors, independent voltage and current sources, four types of dependent sources, lossless
and lossy transmission lines (two separate implementations), switches, uniform
distributed RC lines, and the five most common semiconductor devices: diodes,
<a
id="dx1-12002"></a>BJTs, <a
id="dx1-12003"></a>JFETs, MESFETs, and MOSFET. <a
id="dx1-12004"></a>This module is indicated by the label 9 in
Fig. <a
href="#x1-130011">3.1<!--tex4ht:ref: blockd --></a>.
<!--l. 184--><p class="noindent" >
<h3 class="sectionHead"><span class="titlemark">3.2 </span> <a
id="x1-130003.2"></a>Work flow of eSim</h3>
<!--l. 185--><p class="noindent" >Fig. <a
href="#x1-130011">3.1<!--tex4ht:ref: blockd --></a> shows the work flow in eSim. The block diagram consists of mainly three
parts:
<ul class="itemize1">
<li class="itemize">Schematic Editor
</li>
<li class="itemize">PCB Layout Editor
</li>
<li class="itemize">Circuit Simulators</li></ul>
<!--l. 193--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-130011"></a>
<!--l. 196--><p class="noindent" ><img
src="figures/blockdiagram.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 3.1: </span><span
class="content">Work flow in eSim. (Boxes with dotted lines denote the modules developed
in this work).</span></div><!--tex4ht:label?: x1-130011 -->
<!--l. 201--><p class="indent" > </div><hr class="endfigure">
<!--l. 203--><p class="indent" > Here we explain the role of each block in designing electronic systems. Circuit design is the
first step in the design of an electronic circuit. Generally a circuit diagram is drawn on a
paper, and then entered into a computer using a schematic editor. Eeschema is the schematic
editor for eSim. Thus all the functionalities of Eeschema are naturally available in eSim.
<a
id="dx1-13002"></a>
<!--l. 210--><p class="indent" > Libraries for components, explicitly or implicitly supported by Ngspice, have been created
using the features of Eeschema. As Eeschema is originally intended for PCB design, there are
no fictitious components such as voltage or current sources. Thus, a new library for different
types of voltage and current sources such as sine, pulse and square wave, has been added in
eSim. A library which gives the functionality of printing and plotting has also been
created.
<!--l. 219--><p class="indent" > The schematic editor provides a netlist file, which describes the electrical connections of
the design. In order to create a PCB layout, physical components are required to be mapped
into their footprints. To perform component to footprint mapping, CvPcb is used. Footprints
have been created for the components in the newly created libraries. Pcbnew is used to draw
a PCB layout.
<!--l. 227--><p class="indent" > After designing a circuit, it is essential to check the integrity of the circuit design. In the
case of large electronic circuits, breadboard testing is impractical. In such cases, electronic
system designers rely heavily on simulation. The accuracy of the simulation results can be
increased by accurate modeling of the circuit elements. Model Builder provides the facility to
define a new model for devices and edit existing models. Complex circuit elements can be
created by hierarchical modeling. Subcircuit Builder provides an easy way to create a
subcircuit.
<!--l. 238--><p class="indent" > The netlist generated by Schematic Editor cannot be directly used for simulation due to
compatibility issues. Netlist Converter converts it into Ngspice compatible format. The
type of simulation to be performed and the corresponding options are provided
through a graphical user interface (GUI). This is called KiCad to Ngspice Converter in
eSim.
<!--l. 245--><p class="indent" > eSim uses Ngspice for analog, digital, mixed-level/mixed-signal circuit simulation. Ngspice
is based on three open source software packages<span class="cite"> [<a
href="#Xspice">14</a>]</span>:
<ul class="itemize1">
<li class="itemize">Spice3f5 (analog circuit simulator)
</li>
<li class="itemize">Cider1b1 (couples Spice3f5 circuit simulator to DSIM device simulator)
</li>
<li class="itemize">Xspice (code modeling support and simulation of digital components through an
event driven algorithm)</li></ul>
<!--l. 253--><p class="noindent" >It is a part of gEDA <a
id="dx1-13003"></a>project. Ngspice is capable of simulating devices with BSIM, <a
id="dx1-13004"></a>EKV, HICUM, <a
id="dx1-13005"></a><a
id="dx1-13006"></a>
HiSim, <a
id="dx1-13007"></a>PSP, <a
id="dx1-13008"></a>and PTM <a
id="dx1-13009"></a>models. It is widely used due to its accuracy even for the latest
technology devices.
<h2 class="chapterHead"><span class="titlemark">Chapter 4</span><br /><a
id="x1-140004"></a>Getting Started</h2>
<!--l. 5--><p class="noindent" >In this chapter we will get started with eSim. We will run through the various options
available with an example circuit. Referring to this chapter will make one familiar with
eSim and will help plan the project before actually designing a circuit. Lets get
started.
<h3 class="sectionHead"><span class="titlemark">4.1 </span> <a
id="x1-150004.1"></a>eSim Main Window</h3>
<!--l. 12--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">4.1.1 </span> <a
id="x1-160004.1.1"></a>How to launch eSim in Ubuntu?</h4>
<!--l. 13--><p class="noindent" >After installation is completed, to launch eSim 1. Go to terminal.<br
class="newline" />2. Type <span
class="cmbx-10x-x-109">esim </span>and hit enter.<br
class="newline" />The first window that appears is workspace dialog as shown in Fig. <a
href="#x1-160011">4.1<!--tex4ht:ref: workspace --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-160011"></a>
<!--l. 19--><p class="noindent" ><img
src="figures/workspace.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.1: </span><span
class="content">eSim-Workspace</span></div><!--tex4ht:label?: x1-160011 -->
<!--l. 22--><p class="indent" > </div><hr class="endfigure">
<!--l. 24--><p class="indent" > The default workspace is eSim-Workspace under home directory. To create new workspace
use <span
class="cmti-10x-x-109">browse </span>option.
<h4 class="subsectionHead"><span class="titlemark">4.1.2 </span> <a
id="x1-170004.1.2"></a>Main-GUI</h4>
<!--l. 27--><p class="noindent" >The main GUI window of eSim is as shown in Fig. <a
href="#x1-170012">4.2<!--tex4ht:ref: maingui --></a> <hr class="figure"><div class="figure"
>
<a
id="x1-170012"></a>
<!--l. 30--><p class="noindent" ><img
src="figures/maingui.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.2: </span><span
class="content">eSim Main GUI</span></div><!--tex4ht:label?: x1-170012 -->
<!--l. 33--><p class="indent" > </div><hr class="endfigure">
<!--l. 34--><p class="indent" > The eSim main window consists of the following symbols.
<dl class="enumerate"><dt class="enumerate">
1. </dt><dd
class="enumerate">Toolbar
</dd><dt class="enumerate">
2. </dt><dd
class="enumerate">Menubar
</dd><dt class="enumerate">
3. </dt><dd
class="enumerate">Project explorer
</dd><dt class="enumerate">
4. </dt><dd
class="enumerate">Dockarea
</dd><dt class="enumerate">
5. </dt><dd
class="enumerate">Console area</dd></dl>
<h5 class="subsubsectionHead"><a
id="x1-180004.1.2"></a>Toolbar</h5>
<!--l. 44--><p class="noindent" ><hr class="figure"><div class="figure"
>
<a
id="x1-180013"></a>
<!--l. 46--><p class="noindent" ><img
src="figures/guitoolbar.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.3: </span><span
class="content">Toolbar</span></div><!--tex4ht:label?: x1-180013 -->
<!--l. 49--><p class="noindent" ></div><hr class="endfigure">
<ul class="itemize1">
<li class="itemize">Open Schematic: The first tool on the toolbar i.e. <span
class="cmti-10x-x-109">Schematic Editor</span><a
id="dx1-18002"></a>. Clicking on
this button will open Eeschema, the KiCad schematic editor.
</li>
<li class="itemize">Convert KiCad to Ngspice: This converter converts KiCad spice netlist into
Ngspice compatible netlist. The KiCad to Ngspice window consists of total five
tabs as namely <span
class="cmti-10x-x-109">Analysis, Device Model, Source Details, Model Library, Subcircuits</span>.
Once the values have been entered, press the <span
class="cmtt-10x-x-109">Convert </span>key. It will generate
<span
class="cmtt-10x-x-109">.cir.out </span>file in the same project directory.<br
class="newline" />Note that <span
class="cmti-10x-x-109">KiCad to Ngspice Converter </span>can only be used if current project has
created the KiCad spice netlist file <span
class="cmtt-10x-x-109">.cir</span>.<br
class="newline" />
<!--l. 62--><p class="noindent" >The details of tabs under KiCad to Ngspice converter are as follows:<br
class="newline" />
<h5 class="subsubsectionHead"><a
id="x1-190004.1.2"></a>Analysis</h5>
<!--l. 65--><p class="noindent" >This feature helps the user to perform different types of analysis such as Operating
point analysis, <a
id="dx1-19001"></a>DC analysis, <a
id="dx1-19002"></a>AC analysis, <a
id="dx1-19003"></a>transient analysis. <a
id="dx1-19004"></a>It has the facility
to
<ul class="itemize2">
<li class="itemize">Insert type of analysis such as AC or DC or Transient
</li>
<li class="itemize">Insert values for analysis</li></ul>
<!--l. 73--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-200004.1.2"></a>Source Details</h5>
<!--l. 74--><p class="noindent" >eSim sources are added from <span
class="cmtt-10x-x-109">eSim</span><span
class="cmtt-10x-x-109">_Sources </span>library. Source such as <span
class="cmti-10x-x-109">SINE, AC, DC,</span>
<span
class="cmti-10x-x-109">PULSE </span>are in this library. The parameter values to all the sources added in the
shcematic can be given through ’Source Details’.
<!--l. 76--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-210004.1.2"></a>Ngspice Model</h5>
<!--l. 77--><p class="noindent" >Ngspice has in built model such as <span
class="cmti-10x-x-109">flipflop(D,SR,JK,T),gain,summer </span>etc. which can be
utilised while building a circuit. eSim allows to add and modify Ngspice model
parameter through Ngspice Model tab.
<!--l. 80--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-220004.1.2"></a>Device Modeling</h5>
<!--l. 81--><p class="noindent" >Devices like <span
class="cmti-10x-x-109">Diode, JFET, MOSFET, IGBT, MOS </span>etc used in the circuit can be
modeled using device model libraries. eSim also provides editing and adding new model
libraries. While converting KiCad to Ngspice, these library files are added to the
corresponding devices used in the circuit.
<!--l. 83--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-230004.1.2"></a>Subcircuits</h5>
<!--l. 84--><p class="noindent" >Subcircuits are circuits within circuit. Subcircuiting helps to reuse the parts of the
circuits. The subcircuits in the main circuits are added using this facility. Also, eSim
provides us with the facility to edit already existing subcircuits.
</li>
<li class="itemize">Simulation: The netlist generated using the <span
class="cmti-10x-x-109">KiCad to Ngspice </span>converter is
simulated using simulation button. Clicking on the <span
class="cmti-10x-x-109">Simulation </span>button will run
the Ngspice simulation for current project. Python plotting window will open, as
shown in Fig. <a
href="#x1-230014">4.4<!--tex4ht:ref: simulation-op --></a>. It shows the output waveform of current project. In the
Ngspice tab we can view the output plotted by Ngspice. <hr class="figure"><div class="figure"
><a
id="x1-230014"></a> <img
src="figures/simulation-op.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 4.4: </span><span
class="content">Simulation Output in Python Plotting Window</span></div><!--tex4ht:label?: x1-230014 -->
<!--l. 94--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Foot Print Editor: Clicking on the <span
class="cmti-10x-x-109">Footprint Editor </span>tool will open the <span
class="cmtt-10x-x-109">CvPcb</span>
<a
id="dx1-23002"></a>window. This window will ideally open the .net file for the current project. So,
before using this tool, one should have the netlist for PCB design (a .net
file).
</li>
<li class="itemize">PCB Layout: Clicking on the <span
class="cmti-10x-x-109">Layout Editor </span>tool will open <span
class="cmtt-10x-x-109">Pcbnew</span><a
id="dx1-23003"></a>, the layout editor
used in eSim. In this window, one will create the PCB. It involves laying
tracks and vias, performing optimum routing of tracks, creating one or more
copper layers for PCB, etc. It will be saved as a <span
class="cmtt-10x-x-109">.brd </span>file in the current project
directory.
</li>
<li class="itemize">Model Editor: eSim also gives an option to re-configure the model library of a device. It
facilitates the user to change model library of devices such as diode, transistor,
MOSFET, etc.
</li>
<li class="itemize">Subcircuit: eSim has an option to build subcircuits. The subcircuits can again have
components having subcircuits and so on. This enables users to build commonly used
circuits as subcircuits and then use it across circuits. For example, one can build a 12
Volt power supply as a subcircuit and then use it as just a single component across
circuits without having to recreate it. Clicking on <span
class="cmti-10x-x-109">Subcircuit Builder </span>tool will allow one
to edit or create a subcircuit.
<!--l. 126--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-240004.1.2"></a>Menubar</h5>
<ul class="itemize2">
<li class="itemize">New Project: New projects are created in the eSim-workspace. When this
menu is selected, a new window opens up with <span
class="cmtt-10x-x-109">Enter Project name </span>field.
Type the name of the new project and click on OK. A project directory will
be created in eSim-Workspace. The name of this folder will be the same as
that of the project created. Make sure project name does not have any spaces.
</li>
<li class="itemize">Open Project: This opens the file dialog of defalut workspace where the
projects are stored. The project can be selected which is then added in the
project explorer.
</li>
<li class="itemize">Exit: This button closes the project window and exits.
</li>
<li class="itemize">Help: It opens user manual in the dockarea.</li></ul>
<!--l. 141--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-250004.1.2"></a>Project Explorer</h5>
<!--l. 142--><p class="noindent" >Project explorer has tree of all the project previously added in it. On right clicking the
project we can simply remove or refresh the project in the explorer. Also on
double/right clicking, the project file can be opened in the text editor which can then be
edited.
<!--l. 145--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-260004.1.2"></a>Dockarea</h5>
<!--l. 146--><p class="noindent" >This area is used to open the following windows.
<dl class="enumerate"><dt class="enumerate">
1. </dt><dd
class="enumerate">KiCad to Ngspice converter
</dd><dt class="enumerate">
2. </dt><dd
class="enumerate">Ngspice plotting
</dd><dt class="enumerate">
3. </dt><dd
class="enumerate">Python plotting
</dd><dt class="enumerate">
4. </dt><dd
class="enumerate">Model builder
</dd><dt class="enumerate">
5. </dt><dd
class="enumerate">Subcircuit builder</dd></dl>
<!--l. 155--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-270004.1.2"></a>Console Area</h5>
<!--l. 156--><p class="noindent" >Console area provides information about the activity done in current project.
</li></ul>
<h2 class="chapterHead"><span class="titlemark">Chapter 5</span><br /><a
id="x1-280005"></a>Schematic Creation</h2> The first step in the design of an electronic system is the
design of its circuit. This circuit is usually created using a <span
class="cmtt-10x-x-109">Schematic Editor</span><a
id="dx1-28001"></a> and is called a
<span
class="cmtt-10x-x-109">Schematic</span>. <a
id="dx1-28002"></a>eSim uses <span
class="cmtt-10x-x-109">Eeschema</span> <a
id="dx1-28003"></a>as its schematic editor. Eeschema is the schematic editor of
KiCad. <a
id="dx1-28004"></a>It is a powerful schematic editor software. It allows the creation and modification of
components and symbol libraries and supports multiple hierarchical layers of printed circuit
design.
<h3 class="sectionHead"><span class="titlemark">5.1 </span> <a
id="x1-290005.1"></a>Familiarizing the Schematic Editor interface</h3>
<!--l. 22--><p class="noindent" >Fig. <a
href="#x1-290011">5.1<!--tex4ht:ref: eesch1 --></a> shows the schematic editor and the various menu and toolbars. We will explain them
briefly in this section. <hr class="figure"><div class="figure"
>
<a
id="x1-290011"></a>
<div class="center"
>
<!--l. 25--><p class="noindent" >
<!--l. 26--><p class="noindent" ><img
src="figures/schematic1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.1: </span><span
class="content">Schematic editor with the menu bar and toolbars marked</span></div><!--tex4ht:label?: x1-290011 -->
</div>
<!--l. 30--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">5.1.1 </span> <a
id="x1-300005.1.1"></a>Top menu bar</h4>
<!--l. 35--><p class="noindent" >The top menu bar will be available at the top left corner. Some of the important menu
options in the top menu bar are:
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">File - The file menu items are given below:
<dl class="compactenum"><dt class="compactenum">
(a) </dt><dd
class="compactenum">New - Clear current schematic and start a new one
</dd><dt class="compactenum">
(b) </dt><dd
class="compactenum">Open - Open a schematic
</dd><dt class="compactenum">
(c) </dt><dd
class="compactenum">Open Recent - A list of recently opened files for loading
</dd><dt class="compactenum">
(d) </dt><dd
class="compactenum">Save Whole Schematic project - Save current sheet and all its hierarchy.
</dd><dt class="compactenum">
(e) </dt><dd
class="compactenum">Save Current Sheet Only - Save current sheet, but not others in a hierarchy.
</dd><dt class="compactenum">
(f) </dt><dd
class="compactenum">Save Current sheet as - Save current sheet with a new name.
</dd><dt class="compactenum">
(g) </dt><dd
class="compactenum">Print - Access to print menu (See Fig. <a
href="#x1-300112">5.2<!--tex4ht:ref: print --></a>).
</dd><dt class="compactenum">
(h) </dt><dd
class="compactenum">Plot - Plot the schematic in Postscript, HPGL, SVF or DXF format
</dd><dt class="compactenum">
(i) </dt><dd
class="compactenum">Quit - Quit the schematic editor.</dd></dl>
<!--l. 53--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-300112"></a>
<div class="center"
>
<!--l. 54--><p class="noindent" >
<!--l. 55--><p class="noindent" ><img
src="figures/print.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.2: </span><span
class="content">Print options</span></div><!--tex4ht:label?: x1-300112 -->
</div>
<!--l. 59--><p class="noindent" ></div><hr class="endfigure">
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Place - The place menu has shortcuts for placing various items like components, wire
and junction, on to the schematic editor window. See Sec. <a
href="#x1-340005.1.5">5.1.5<!--tex4ht:ref: short --></a> to know more about
various shortcut keys (hotkeys).
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Preferences - The preferences menu has the following options:
<dl class="compactenum"><dt class="compactenum">
(a) </dt><dd
class="compactenum">Library - Select libraries and library paths
</dd><dt class="compactenum">
(b) </dt><dd
class="compactenum">Colors - Select colors for various items.
</dd><dt class="compactenum">
(c) </dt><dd
class="compactenum">Options - Display schematic editor options (Units, Grid size).
</dd><dt class="compactenum">
(d) </dt><dd
class="compactenum">Language - Shows the current list of translations. Use default.
</dd><dt class="compactenum">
(e) </dt><dd
class="compactenum">Hotkeys - Access to the hot keys menu. See Sec. <a
href="#x1-340005.1.5">5.1.5<!--tex4ht:ref: short --></a> about hotkeys.
</dd><dt class="compactenum">
(f) </dt><dd
class="compactenum">Read preferences - Read configuration file.
</dd><dt class="compactenum">
(g) </dt><dd
class="compactenum">Save preferences - Save configuration file.</dd></dl>
</dd></dl>
<!--l. 79--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">5.1.2 </span> <a
id="x1-310005.1.2"></a>Top toolbar</h4>
<a
id="dx1-31001"></a>
<a
id="dx1-31002"></a>
<!--l. 80--><p class="noindent" >Some of the important tools in the top toolbar are discussed below. They are marked in
Fig. <a
href="#x1-310033">5.3<!--tex4ht:ref: eeschem2 --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-310033"></a>
<!--l. 84--><p class="noindent" ><img
src="figures/toptoolbar.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.3: </span><span
class="content">Toolbar on top with important tools marked</span></div><!--tex4ht:label?: x1-310033 -->
<!--l. 87--><p class="indent" > </div><hr class="endfigure">
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Save - Save the current schematic
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Library Editor - Create or edit components.
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Library Browser - Browse through the various component libraries available
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">Navigate schematic hierarchy - Navigate among the root and sub-sheets in the
hierarchy
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">Print - Print the schematic
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">Generate netlist - Generate a netlist for PCB design or for simulation.
</dd><dt class="compactenum">
7. </dt><dd
class="compactenum">Annotate - Annotate the schematic
</dd><dt class="compactenum">
8. </dt><dd
class="compactenum">Check ERC - Do Electric Rules Check for the schematic
</dd><dt class="compactenum">
9. </dt><dd
class="compactenum">Create BOM - Create a Bill of Materials of the schematic</dd></dl>
<h4 class="subsectionHead"><span class="titlemark">5.1.3 </span> <a
id="x1-320005.1.3"></a>Toolbar on the right</h4>
<a
id="dx1-32001"></a>
<a
id="dx1-32002"></a>
<!--l. 104--><p class="noindent" >The toolbar on the right side of the schematic editor window has many important tools. Some
of them are marked in Fig. <a
href="#x1-320034">5.4<!--tex4ht:ref: eeschem3 --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-320034"></a>
<!--l. 108--><p class="noindent" ><img
src="figures/rightoolbar.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.4: </span><span
class="content">Toolbar on right with important tools marked</span></div><!--tex4ht:label?: x1-320034 -->
<!--l. 111--><p class="indent" > </div><hr class="endfigure">
<!--l. 112--><p class="indent" > Let us now look at each of these tools and their uses.
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Place a component - Load a component to the schematic. See Sec. <a
href="#x1-360005.2.1">5.2.1<!--tex4ht:ref: selplace --></a> for more
details.
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Place a power port - Load a power port (Vcc, ground) to the schematic
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Place wire - Draw wires to connect components in schematic
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">Place bus - Place a bus on the schematic
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">Place a no connect - Place a no connect flag, particularly useful in ICs
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">Place a local label - Place a label or node name which is local to the schematic
</dd><dt class="compactenum">
7. </dt><dd
class="compactenum">Place a global label - Place a global label (these are connected across all schematic
diagrams in the hierarchy)
</dd><dt class="compactenum">
8. </dt><dd
class="compactenum">Place a text or comment - Place a text or comment in the schematic</dd></dl>
<h4 class="subsectionHead"><span class="titlemark">5.1.4 </span> <a
id="x1-330005.1.4"></a>Toolbar on the left</h4>
<a
id="dx1-33001"></a>
<a
id="dx1-33002"></a>
<!--l. 126--><p class="noindent" >Some of the important tools in the toolbar on the left are discussed below. They are marked
in Fig. <a
href="#x1-330035">5.5<!--tex4ht:ref: eeschem4 --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-330035"></a>
<!--l. 130--><p class="noindent" ><img
src="figures/lefttoolbar.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.5: </span><span
class="content">Toolbar on left with important tools marked</span></div><!--tex4ht:label?: x1-330035 -->
<!--l. 133--><p class="indent" > </div><hr class="endfigure">
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Show/Hide grid - Show or Hide the grid in the schematic editor. Pressing the tool
again hides (shows) the grid if it was shown (hidden) earlier.
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Show hidden pins - Show hidden pins of certain components, for example, power
pins of certain ICs.</dd></dl>
<h4 class="subsectionHead"><span class="titlemark">5.1.5 </span> <a
id="x1-340005.1.5"></a>Hotkeys</h4>
<!--l. 142--><p class="noindent" >A set of keyboard keys are associated with various operations in the schematic editor. These
keys save time and make it easy to switch from one operation to another. The list of hotkeys
can be viewed by going to Preferences in the top menu bar. Choose <span
class="cmti-10x-x-109">Hotkeys </span>and
select <span
class="cmti-10x-x-109">List current keys</span>. The hotkeys can also be edited by selecting the option
<span
class="cmti-10x-x-109">Edit Hotkeys</span>. Some frequently used hotkeys, along with their functions, are given
below:
<ul>
<li class="compactitem">F1 - Zoom in
</li>
<li class="compactitem">F2 - Zoom out
</li>
<li class="compactitem">Ctrl + Z - Undo
</li>
<li class="compactitem">Delete - Delete item
</li>
<li class="compactitem">M - Move item
</li>
<li class="compactitem">C - Copy item
</li>
<li class="compactitem">A - Add/place component
</li>
<li class="compactitem">P - Place power component
</li>
<li class="compactitem">R - Rotate item
</li>
<li class="compactitem">X - Mirror component about X axis
</li>
<li class="compactitem">Y - Mirror component about Y axis
</li>
<li class="compactitem">E - Edit schematic component
</li>
<li class="compactitem">W - Place wire
</li>
<li class="compactitem">T - Add text
</li>
<li class="compactitem">S - Add sheet</li></ul>
<!--l. 166--><p class="noindent" ><span
class="cmti-10x-x-109">Note: Both lower and upper-case keys will work as hotkeys</span>.
<!--l. 168--><p class="noindent" >
<h3 class="sectionHead"><span class="titlemark">5.2 </span> <a
id="x1-350005.2"></a>Schematic creation for simulation</h3>
<a
id="dx1-35001"></a>
<!--l. 170--><p class="noindent" >There are certain differences between the schematic created for simulation and that created
for PCB design. We need certain components like plots and current sources. For simulation
whereas these are not needed for PCB design. For PCB design, we would require connectors
(e.g. DB15 and 2 pin connector) for taking signals in and out of the PCB whereas
these have no meaning in simulation. This section covers schematic creation for
simulation.
<!--l. 177--><p class="indent" > The first step in the creation of circuit schematic is the selection and placement of
required components. The components are grouped under eSim-libraries as shown in Fig. <a
href="#x1-350026">5.6<!--tex4ht:ref: libraries --></a>.
<hr class="figure"><div class="figure"
>
<a
id="x1-350026"></a>
<!--l. 181--><p class="noindent" ><img
src="figures/libraries.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.6: </span><span
class="content">eSim-Components Libraries</span></div><!--tex4ht:label?: x1-350026 -->
<!--l. 184--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">5.2.1 </span> <a
id="x1-360005.2.1"></a>Selection and placement of components</h4>
<a
id="dx1-36001"></a>
<!--l. 189--><p class="noindent" >We would need a resistor, a capacitor, a voltage source, ground terminal. To place a resistor
on the schematic editor window, select the <span
class="cmti-10x-x-109">Place a component </span>tool from the toolbar
on the right side and click anywhere on the schematic editor. This opens up the
component selection window. Resistor component can be found under <span
class="cmti-10x-x-109">eSim</span><span
class="cmti-10x-x-109">_Devices</span>
library. Fig. <a
href="#x1-360027">5.7<!--tex4ht:ref: resistor --></a> shows the selection of resistor component. Click on OK. A resistor
will be tied to the cursor. Place the resistor on the schematic editor by a single
click.
<!--l. 196--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-360027"></a>
<!--l. 198--><p class="noindent" ><img
src="figures/resistor.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.7: </span><span
class="content">Placing a resistor using the Place a Component tool</span></div><!--tex4ht:label?: x1-360027 -->
<!--l. 201--><p class="indent" > </div><hr class="endfigure">
<!--l. 202--><p class="indent" > To place the next component, i.e., capacitor, click again on the schematic editor.Similarly,
Capacitor component is found under <span
class="cmti-10x-x-109">eSim</span><span
class="cmti-10x-x-109">_Devices </span>library. Click on OK. Place the capacitor
on the schematic editor by a single click. Let us now place a sinusoidal voltage source. This is
required for performing transient analysis. To place it, click again on the schematic editor. On
the component selection window, choose the library <span
class="cmti-10x-x-109">eSim</span><span
class="cmti-10x-x-109">_source </span>by double clicking on it.
Select the component <span
class="cmtt-10x-x-109">SINE </span>and click on OK. Place the sine source on the schematic editor by
a single click.
<!--l. 211--><p class="indent" > Place the component by clicking on the schematic editor. Similarly place <span
class="cmtt-10x-x-109">gnd</span>, a ground
terminal and <span
class="cmtt-10x-x-109">power</span><span
class="cmtt-10x-x-109">_flag </span>under <span
class="cmtt-10x-x-109">power </span>library. Once all the components are placed, the
schematic editor would look like the Fig. <a
href="#x1-360038">5.8<!--tex4ht:ref: afterplace --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-360038"></a>
<!--l. 216--><p class="noindent" ><img
src="figures/afterplace.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.8: </span><span
class="content">All RC circuit components placed</span></div><!--tex4ht:label?: x1-360038 -->
<!--l. 219--><p class="indent" > </div><hr class="endfigure">
<!--l. 220--><p class="indent" > Let us rotate the resistor to complete the circuit. To rotate the resistor, place the cursor
on the resistor and press the key <span
class="cmtt-10x-x-109">R</span>. Note that if the cursor is placed above the letter <span
class="cmtt-10x-x-109">R </span>(not
<span
class="cmtt-10x-x-109">R?</span>) on the resistor, it asks to clarify selection. Choose the option <span
class="cmti-10x-x-109">Component R</span>. This can be
avoided by placing the cursor slightly away from the letter R as shown in Fig. <a
href="#x1-360059">5.9<!--tex4ht:ref: rotate --></a>. This
applies to all components.<a
id="dx1-36004"></a> <hr class="figure"><div class="figure"
>
<a
id="x1-360059"></a>
<!--l. 228--><p class="noindent" ><img
src="figures/rotate.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.9: </span><span
class="content">Placing the cursor (cross mark) slightly away from the letter R</span></div><!--tex4ht:label?: x1-360059 -->
<!--l. 231--><p class="indent" > </div><hr class="endfigure">
<!--l. 232--><p class="indent" > If one wants to move a component, place the cursor on top of the component and press the
key <span
class="cmtt-10x-x-109">M</span>. The component will be tied to the cursor and can be moved in any direction.
<a
id="dx1-36006"></a>
<h4 class="subsectionHead"><span class="titlemark">5.2.2 </span> <a
id="x1-370005.2.2"></a>Wiring the circuit</h4>
<a
id="dx1-37001"></a>
<!--l. 238--><p class="noindent" >The next step is to wire the connections. Let us connect the resistor to the capacitor.
To do so, point the cursor to the terminal of resistor to be connected and press
the key <span
class="cmtt-10x-x-109">W</span>. It has now changed to the wiring mode. Move the cursor towards the
terminal of the capacitor and click on it. A wire is formed as shown in Fig. <a
href="#x1-37002r1">5.10a<!--tex4ht:ref: wire1 --></a>.
<hr class="figure"><div class="figure"
>
<a
id="x1-3700510"></a>
<a
id="x1-37002r1"></a>
<!--l. 248--><p class="noindent" > <img
src="figures/wire1.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Initial</span>
<span
class="cmr-9">stages</span> <a
id="x1-37003r2"></a> <img
src="figures/wirefin.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Wiring</span>
<span
class="cmr-9">done</span> <a
id="x1-37004r3"></a> <img
src="figures/schemfin.png" alt="PIC"
>
<span
class="cmr-9">(c)</span>
<span
class="cmr-9">Final</span>
<span
class="cmr-9">schematic</span>
<span
class="cmr-9">with</span>
<span
class="cmr-9">PWR</span><span
class="cmr-9">_FLAG</span>
<br /> <div class="caption"
><span class="id">Figure 5.10: </span><span
class="content">Various stages of wiring</span></div><!--tex4ht:label?: x1-3700510 -->
<!--l. 256--><p class="indent" > </div><hr class="endfigure">
<!--l. 257--><p class="indent" > Similarly connect the wires between all terminals and the final schematic would look like
Fig. <a
href="#x1-37003r2">5.10b<!--tex4ht:ref: wirefin --></a>.
<h4 class="subsectionHead"><span class="titlemark">5.2.3 </span> <a
id="x1-380005.2.3"></a>Assigning values to components</h4>
<a
id="dx1-38001"></a>
<!--l. 261--><p class="noindent" >We need to assign values to the components in our circuit i.e., resistor and capacitor. Note
that the sine voltage source has been placed for simulation. The specifications of sine source
will be given during simulation. To assign value to the resistor, place the cursor above the
letter <span
class="cmtt-10x-x-109">R </span>(not <span
class="cmtt-10x-x-109">R?</span>) and press the key <span
class="cmtt-10x-x-109">E</span>. Choose <span
class="cmti-10x-x-109">Field value</span>. Type <span
class="cmtt-10x-x-109">1k </span>in the <span
class="cmti-10x-x-109">Edit value field </span>box
as shown in Fig. <a
href="#x1-3800211">5.11<!--tex4ht:ref: field --></a>. 1k means 1<span
class="cmmi-10x-x-109">k</span>Ω. Similarly give the value <span
class="cmtt-10x-x-109">1u </span>for the capacitor. 1u means
1<span
class="cmmi-10x-x-109">μF</span>.
<!--l. 271--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-3800211"></a>
<!--l. 273--><p class="noindent" ><img
src="figures/field.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.11: </span><span
class="content">Editing value of resistor</span></div><!--tex4ht:label?: x1-3800211 -->
<!--l. 276--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">5.2.4 </span> <a
id="x1-390005.2.4"></a>Annotation and ERC</h4>
<a
id="dx1-39001"></a>
<a
id="dx1-39002"></a>
<a
id="dx1-39003"></a>
<a
id="dx1-39004"></a>
<!--l. 280--><p class="noindent" >The next step is to annotate the schematic. Annotation gives unique references to the
components. To annotate the schematic, click on <span
class="cmti-10x-x-109">Annotate schematic </span>tool from the
top toolbar. Click on <span
class="cmtt-10x-x-109">annotation</span>, then click on <span
class="cmtt-10x-x-109">OK </span>and finally click on close as
shown in Fig. <a
href="#x1-3900813">5.13<!--tex4ht:ref: anno --></a>. The schematic is now annotated. The question marks next to
component references have been replaced by unique numbers. If there are more than
one instance of a component (say resistor), the annotation will be done as R1, R2,
etc.
<!--l. 289--><p class="indent" > Let us now do <span
class="cmtt-10x-x-109">ERC </span>or <span
class="cmtt-10x-x-109">Electric Rules Check</span>. To do so, click on <span
class="cmti-10x-x-109">Perform electric rules</span>
<span
class="cmti-10x-x-109">check </span>tool from the top toolbar. Click on <span
class="cmti-10x-x-109">Test Erc </span>button. The error as shown in Fig. <a
href="#x1-3900712">5.12<!--tex4ht:ref: erc --></a>
may be displayed. Click on close in the test erc<a
id="dx1-39005"></a> window. <a
id="dx1-39006"></a><hr class="figure"><div class="figure"
>
<a
id="x1-3900712"></a>
<!--l. 296--><p class="noindent" ><img
src="figures/erc2.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.12: </span><span
class="content">ERC error</span></div><!--tex4ht:label?: x1-3900712 -->
<!--l. 299--><p class="indent" > </div><hr class="endfigure">
<!--l. 300--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-3900813"></a>
<!--l. 302--><p class="noindent" ><img
src="figures/anno.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.13: </span><span
class="content">Steps in annotating a schematic: 1. First click on Annotation then 2. Click
on Ok then 3. Click on close</span></div><!--tex4ht:label?: x1-3900813 -->
<!--l. 305--><p class="indent" > </div><hr class="endfigure">
<!--l. 306--><p class="indent" > There will be a green arrow pointing to the source of error in the schematic. Here it points
to the ground terminal. This is shown in Fig. <a
href="#x1-3900914">5.14<!--tex4ht:ref: ercgnd --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-3900914"></a>
<!--l. 311--><p class="noindent" ><img
src="figures/ercgnd.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.14: </span><span
class="content">Green arrow pointing to Ground terminal indicating an ERC error</span></div><!--tex4ht:label?: x1-3900914 -->
<!--l. 314--><p class="indent" > </div><hr class="endfigure">
<!--l. 315--><p class="indent" > To correct this error, place a <span
class="cmtt-10x-x-109">PWR</span><span
class="cmtt-10x-x-109">_FLAG </span>from the Eeschema library <span
class="cmti-10x-x-109">power</span>. <a
id="dx1-39010"></a>Connect the
power flag to the ground terminal as shown in Fig. <a
href="#x1-37004r3">5.10c<!--tex4ht:ref: schemfin --></a>. One needs to place <span
class="cmtt-10x-x-109">PWR</span><span
class="cmtt-10x-x-109">_FLAG</span>
wherever the error shown in Fig. <a
href="#x1-3900712">5.12<!--tex4ht:ref: erc --></a> is obtained. Repeat the ERC. Now there are no errors.
With this we have created the schematic for simulation.
<h4 class="subsectionHead"><span class="titlemark">5.2.5 </span> <a
id="x1-400005.2.5"></a>Netlist generation</h4>
<a
id="dx1-40001"></a>
<!--l. 326--><p class="noindent" >To simulate the circuit that has been created in the previous section, we need to generate its
netlist. <span
class="cmtt-10x-x-109">Netlist </span>is a list of components in the schematic along with their connection
information. <a
id="dx1-40002"></a>To do so, click on the <span
class="cmti-10x-x-109">Generate netlist </span>tool from the top toolbar. Click on spice
from the window that opens up. Check the option <span
class="cmtt-10x-x-109">Default Format</span>. Then click on <span
class="cmti-10x-x-109">Generate</span>.
This is shown in Fig. <a
href="#x1-4000315">5.15<!--tex4ht:ref: chap5net --></a>. Save the netlist. This will be a <span
class="cmtt-10x-x-109">.cir </span>file. Do not change the
directory while saving. <hr class="figure"><div class="figure"
>
<a
id="x1-4000315"></a>
<!--l. 337--><p class="noindent" ><img
src="figures/netlist.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 5.15: </span><span
class="content">Steps in generating a Netlist for simulation: 1. Click on Spice then 2.
Check the option <span
class="cmtt-10x-x-109">Default Format </span>then 3. Click on Generate </span></div><!--tex4ht:label?: x1-4000315 -->
<!--l. 340--><p class="indent" > </div><hr class="endfigure">
<!--l. 341--><p class="indent" > Now the netlist is ready to be simulated. Refer to <span class="cite"> [<a
href="#Xkicad">15</a>]</span> or <span class="cite"> [<a
href="#Xkicad2">16</a>]</span> to know more about
Eeschema.
<h2 class="chapterHead"><span class="titlemark">Chapter 6</span><br /><a
id="x1-410006"></a>PCB Design</h2> Printed Circuit Board (PCB) <a
id="dx1-41001"></a>design is an important step in
electronic system design. Every component of the circuit needs to be placed and connections
routed to minimise delay and area. Each component has an associated footprint. Footprint
refers to the physical layout of a component that is required to mount it on the PCB.<a
id="dx1-41002"></a> <a
id="dx1-41003"></a>PCB
design involves associating footprints to all components, placing them appropriately to
minimise wire length and area, connecting the footprints using tracks/vias and finally
extracting the required files needed for printing the PCB. Let us see the steps to design PCB
using eSim.
<h3 class="sectionHead"><span class="titlemark">6.1 </span> <a
id="x1-420006.1"></a>Schematic creation for PCB design</h3>
<!--l. 16--><p class="noindent" >In Chapter <a
href="#x1-610009">9<!--tex4ht:ref: chap5 --></a>, we will see the differences between schematic for simulation and schematic for
PCB design. Let us design the PCB for a RC circuit. A resistor, capacitor, ground, power flag
and a connector are required. Connectors are used to take signals in and out of the
PCB.
<!--l. 22--><p class="indent" > Create the circuit schematic as shown in Fig. <a
href="#x1-420011">6.1<!--tex4ht:ref: pcbschfin --></a>. The two pin connector (<span
class="cmti-10x-x-109">CONN</span><span
class="cmti-10x-x-109">_2</span>) can
be placed from the Eeschema library <span
class="cmti-10x-x-109">conn</span>. Do the annotation and test for ERC. Refer to
Chapter <a
href="#x1-610009">9<!--tex4ht:ref: chap5 --></a> to know more about basic steps in schematic creation.
<!--l. 28--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-420011"></a>
<!--l. 30--><p class="noindent" ><img
src="figures/pcbschfin.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.1: </span><span
class="content">Final circuit schematic for RC low pass circuit</span></div><!--tex4ht:label?: x1-420011 -->
<!--l. 33--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">6.1.1 </span> <a
id="x1-430006.1.1"></a>Netlist generation for PCB</h4>
<a
id="dx1-43001"></a>
<a
id="dx1-43002"></a>
<!--l. 38--><p class="noindent" >The netlist for PCB is different from that for simulation. To generate netlist for PCB, click on
the <span
class="cmti-10x-x-109">Generate netlist </span>tool from the top toolbar in Schematic editor. In the Netlist window,
under the tab <span
class="cmti-10x-x-109">Pcbnew</span>, <a
id="dx1-43003"></a>click on the button <span
class="cmti-10x-x-109">Netlist</span>. This is shown in Fig. <a
href="#x1-430042">6.2<!--tex4ht:ref: netlistpcb --></a>. Click on
<span
class="cmti-10x-x-109">Save </span>in the Save netlist file dialog box that opens up. Do not change the directory
or the name of the netlist file. Save the schematic and close the schematic editor.
<hr class="figure"><div class="figure"
>
<a
id="x1-430042"></a>
<!--l. 48--><p class="noindent" ><img
src="figures/netlistpcb.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.2: </span><span
class="content">Netlist generation for PCB</span></div><!--tex4ht:label?: x1-430042 -->
<!--l. 51--><p class="indent" > </div><hr class="endfigure">
<!--l. 52--><p class="indent" > <span
class="cmti-10x-x-109">Note that the netlist for PCB has an extension </span><span
class="cmtt-10x-x-109">.net</span><span
class="cmti-10x-x-109">. The netlist created for simulation</span>
<span
class="cmti-10x-x-109">has an extension </span><span
class="cmtt-10x-x-109">.cir</span>.
<h4 class="subsectionHead"><span class="titlemark">6.1.2 </span> <a
id="x1-440006.1.2"></a>Mapping of components using Footprint Editor</h4>
<a
id="dx1-44001"></a>
<a
id="dx1-44002"></a>
<a
id="dx1-44003"></a>
<!--l. 59--><p class="noindent" >Once the netlist for PCB is created, one needs to map each component in the netlist to a
footprint. The tool <span
class="cmti-10x-x-109">Footprint Editor </span>is used for this. eSim uses <span
class="cmtt-10x-x-109">CvPcb </span>as its footprint editor.
<span
class="cmtt-10x-x-109">CvPcb </span>is the footprint editor tool in KiCad. <a
id="dx1-44004"></a>
<!--l. 64--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">6.1.3 </span> <a
id="x1-450006.1.3"></a>Familiarising the Footprint Editor tool</h4>
<a
id="dx1-45001"></a>
<!--l. 67--><p class="noindent" >If one opens the <span
class="cmti-10x-x-109">Footprint Editor </span>after creating the <span
class="cmtt-10x-x-109">.net </span>netlist file, the Footprint editor as
shown in Fig. <a
href="#x1-450023">6.3<!--tex4ht:ref: fe --></a> will be obtained. The menu bar and toolbars and the panes are marked in
this figure. The menu bar will be available in the top left corner. The left pane has a list of
components in the netlist file and the right pane has a list of available footprints for each
component. <hr class="figure"><div class="figure"
>
<a
id="x1-450023"></a>
<!--l. 75--><p class="noindent" ><img
src="figures/fe.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.3: </span><span
class="content">Footprint editor with the menu bar, toolbar, left pane and right pane
marked</span></div><!--tex4ht:label?: x1-450023 -->
<!--l. 78--><p class="indent" > </div><hr class="endfigure">
<!--l. 79--><p class="indent" > <span
class="cmti-10x-x-109">Note that if the Footprint Editor is opened before creating a ‘.net’ file, then the left and</span>
<span
class="cmti-10x-x-109">right panes will be empty</span>.
<h5 class="subsubsectionHead"><a
id="x1-460006.1.3"></a>Toolbar</h5>
<!--l. 82--><p class="noindent" >Some of the important tools in the toolbar are shown in Fig. <a
href="#x1-460014">6.4<!--tex4ht:ref: tb_fe --></a>. They are explained below:
<hr class="figure"><div class="figure"
>
<a
id="x1-460014"></a>
<!--l. 86--><p class="noindent" ><img
src="figures/tb_fe.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.4: </span><span
class="content">Some important tools in the toolbar</span></div><!--tex4ht:label?: x1-460014 -->
<!--l. 89--><p class="indent" > </div><hr class="endfigure">
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Save netlist and footprint files - Save the netlist and the footprints that are
associated with it.
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">View selected footprint - View the selected footprint in 2D. See Sec. <a
href="#x1-470006.1.4">6.1.4<!--tex4ht:ref: viewfp --></a> for more
details.
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Automatic footprint association - Perform footprint association for each
component automatically. Footprints will be selected from the list of footprints
available.
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">Delete all associations - Delete all the footprint associations made
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">Display filtered footprint list - Display a filtered list of footprints suitable to the
selected component
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">Display full footprint list - Display the list of all footprints available (without
filtering)</dd></dl>
<h4 class="subsectionHead"><span class="titlemark">6.1.4 </span> <a
id="x1-470006.1.4"></a>Viewing footprints in 2D and 3D</h4>
<a
id="dx1-47001"></a>
<a
id="dx1-47002"></a>
<!--l. 110--><p class="noindent" >To view a footprint in 2D, select it from the right pane and click on <span
class="cmti-10x-x-109">View selected footprint</span>
from the menu bar. Let us view the footprint for <span
class="cmtt-10x-x-109">SM1210</span>. Choose SM1210 from
the right pane as shown in Fig. <a
href="#x1-470035">6.5<!--tex4ht:ref: sm --></a>. On clicking the <span
class="cmti-10x-x-109">View selected footprint </span>tool,
the <span
class="cmtt-10x-x-109">Footprint </span>window with the view in 2D will be displayed. Click on the <span
class="cmti-10x-x-109">3D</span>
tool in the <span
class="cmtt-10x-x-109">Footprint </span>window, as shown in Fig. <a
href="#x1-470046">6.6<!--tex4ht:ref: 3d --></a>. A top view of the selected
footprint in 3D is obtained. Click on the footprint and rotate it using mouse to get 3D
views from various angles. One such side view of the footprint in 3D is shown in
Fig. <a
href="#x1-470057">6.7<!--tex4ht:ref: 3dv --></a>.
<!--l. 121--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-470035"></a>
<!--l. 123--><p class="noindent" ><img
src="figures/sm.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.5: </span><span
class="content">Viewing footprint for SM1210: 1. Choose the footprint SM1210 from the
right pane, 2. Click on <span
class="cmti-10x-x-109">View selected footprint</span></span></div><!--tex4ht:label?: x1-470035 -->
<!--l. 127--><p class="indent" > </div><hr class="endfigure">
<!--l. 128--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-470046"></a>
<!--l. 130--><p class="noindent" ><img
src="figures/3d.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.6: </span><span
class="content">Footprint view in 2D. Click on <span
class="cmti-10x-x-109">3D </span>to get 3D view</span></div><!--tex4ht:label?: x1-470046 -->
<!--l. 133--><p class="indent" > </div><hr class="endfigure">
<!--l. 134--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-470057"></a>
<!--l. 136--><p class="noindent" ><img
src="figures/3dv.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.7: </span><span
class="content">Side view of the footprint in 3D</span></div><!--tex4ht:label?: x1-470057 -->
<!--l. 139--><p class="indent" > </div><hr class="endfigure">
<h4 class="subsectionHead"><span class="titlemark">6.1.5 </span> <a
id="x1-480006.1.5"></a>Mapping of components in the RC circuit</h4>
<!--l. 142--><p class="noindent" >Click on <span
class="cmtt-10x-x-109">C1 </span>from the left pane. Choose the footprint <span
class="cmti-10x-x-109">C1 </span>from the right pane by double
clicking on it. Click on connector <span
class="cmtt-10x-x-109">P1 </span>from the left pane. Choose the footprint <span
class="cmti-10x-x-109">SIL-2 </span>from the
right pane by double clicking on it. Similarly choose the footprint <span
class="cmti-10x-x-109">R3 </span>for the resistor <span
class="cmtt-10x-x-109">R1</span>. The
footprint mapping is shown in Fig. <a
href="#x1-480018">6.8<!--tex4ht:ref: map --></a>. Save the footprint association by clicking on the <span
class="cmti-10x-x-109">Save</span>
<span
class="cmti-10x-x-109">netlist and footprint files </span>tool from the <span
class="cmtt-10x-x-109">CvPcb </span>toolbar. The <span
class="cmtt-10x-x-109">Save Net and component List</span>
window appears. Browse to the directory where the schematic file for this project is saved and
click on <span
class="cmti-10x-x-109">Save</span>. The netlist gets saved and the <span
class="cmti-10x-x-109">Footprint Editor </span>window closes automatically.
<hr class="figure"><div class="figure"
>
<a
id="x1-480018"></a>
<!--l. 155--><p class="noindent" ><img
src="figures/map.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.8: </span><span
class="content">Footprint mapping done</span></div><!--tex4ht:label?: x1-480018 -->
<!--l. 158--><p class="indent" > </div><hr class="endfigure">
<!--l. 159--><p class="indent" > <span
class="cmti-10x-x-109">Note that one needs to browse to the directory where the schematic file is saved and save</span>
<span
class="cmti-10x-x-109">the ‘.net’ file in the same directory</span>.
<h3 class="sectionHead"><span class="titlemark">6.2 </span> <a
id="x1-490006.2"></a>Creation of PCB layout</h3>
<a
id="dx1-49001"></a>
<a
id="dx1-49002"></a>
<!--l. 164--><p class="noindent" >The next step is to place the footprints and lay tracks between them to get the layout. This is
done using the <span
class="cmti-10x-x-109">Layout Editor </span>tool. eSim uses <span
class="cmtt-10x-x-109">Pcbnew</span>, the layout creation tool in KiCad, as its
layout editor.
<!--l. 169--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">6.2.1 </span> <a
id="x1-500006.2.1"></a>Familiarizing the Layout Editor tool</h4>
<a
id="dx1-50001"></a>
<!--l. 172--><p class="noindent" >The layout editor with the various menu bar and toolbars is shown in Fig. <a
href="#x1-500029">6.9<!--tex4ht:ref: pcbnew --></a>.
<hr class="figure"><div class="figure"
>
<a
id="x1-500029"></a>
<!--l. 176--><p class="noindent" ><img
src="figures/pcbnew.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.9: </span><span
class="content">Layout editor with menu bar, toolbars and layer options marked</span></div><!--tex4ht:label?: x1-500029 -->
<!--l. 179--><p class="indent" > </div><hr class="endfigure">
<!--l. 180--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-5000310"></a>
<!--l. 182--><p class="noindent" ><img
src="figures/toptble.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.10: </span><span
class="content">Top toolbar with important tools marked</span></div><!--tex4ht:label?: x1-5000310 -->
<!--l. 185--><p class="indent" > </div><hr class="endfigure">
<h5 class="subsubsectionHead"><a
id="x1-510006.2.1"></a>Top toolbar</h5>
<!--l. 188--><p class="noindent" >Some of the important menu options in the top menu bar are shown in Fig. <a
href="#x1-5000310">6.10<!--tex4ht:ref: toptble --></a>. They are
explained below:
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">Save board - Save the printed circuit board
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">Module editor - Open module editor to edit footprint modules or libraries
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Read netlist - Import the netlist whose layout needs to be created.
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">Perform design rules check - Check for design rules, unconnected nets, etc., in the
layout.
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">Select working layer - Selection of working layer
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">Show active layer selections and select layer pair for route and place - Select layer
in top and bottom layers. It also shows the currently active layer selections.
</dd><dt class="compactenum">
7. </dt><dd
class="compactenum">Mode footprint: Manual/automatic move and place - Move and place modules</dd></dl>
<!--l. 206--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">6.2.2 </span> <a
id="x1-520006.2.2"></a>Hotkeys</h4>
<a
id="dx1-52001"></a>
<!--l. 208--><p class="noindent" >A list of hotkeys are given below:
<dl class="compactenum"><dt class="compactenum">
1. </dt><dd
class="compactenum">F1 - Zoom in
</dd><dt class="compactenum">
2. </dt><dd
class="compactenum">F2 - Zoom out
</dd><dt class="compactenum">
3. </dt><dd
class="compactenum">Delete - Delete Track or Footprint
</dd><dt class="compactenum">
4. </dt><dd
class="compactenum">X - Add new track
</dd><dt class="compactenum">
5. </dt><dd
class="compactenum">V - Add Via
</dd><dt class="compactenum">
6. </dt><dd
class="compactenum">M - Move Item
</dd><dt class="compactenum">
7. </dt><dd
class="compactenum">F - Flip Footprint
</dd><dt class="compactenum">
8. </dt><dd
class="compactenum">R - Rotate Item
</dd><dt class="compactenum">
9. </dt><dd
class="compactenum">G - Drag Footprint
</dd><dt class="compactenum">
10. </dt><dd
class="compactenum">Ctrl+Z - Undo
</dd><dt class="compactenum">
11. </dt><dd
class="compactenum">E - Edit Item</dd></dl>
<!--l. 222--><p class="noindent" >The list can be viewed by selecting <span
class="cmti-10x-x-109">Preferences </span>from the top menu bar and choosing <span
class="cmti-10x-x-109">List Current</span>
<span
class="cmti-10x-x-109">Keys </span>from the option <span
class="cmti-10x-x-109">Hotkeys</span>.
<!--l. 226--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">6.2.3 </span> <a
id="x1-530006.2.3"></a>PCB design example using RC circuit</h4>
<a
id="dx1-53001"></a>
<!--l. 227--><p class="noindent" >Click on <span
class="cmti-10x-x-109">Layout Editor </span>from the eSim toolbar. Click on <span
class="cmti-10x-x-109">Read Netlist </span>tool from the top
toolbar. Click on <span
class="cmti-10x-x-109">Browse Netlist files </span>on the Netlist window that opens up. Select the <span
class="cmtt-10x-x-109">.net </span>file
that was modified after assigning footprints. Click on <span
class="cmti-10x-x-109">Open</span>. Now Click on <span
class="cmti-10x-x-109">Read Current</span>
<span
class="cmti-10x-x-109">Netlist </span>on the Netlist window. The message area in the Netlist window says that
the RC_pcb.net has been read. The sequence of operations is shown in Fig. <a
href="#x1-5300411">6.11<!--tex4ht:ref: brnet --></a>.
<a
id="dx1-53002"></a><a
id="dx1-53003"></a><hr class="figure"><div class="figure"
>
<a
id="x1-5300411"></a>
<!--l. 238--><p class="noindent" ><img
src="figures/rcpcb.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.11: </span><span
class="content">Importing netlist file to layout editor: 1. Browse netlist Files, 2. Choose
the RC_pcb.net file, 3. Read Netlist file, 4. Close</span></div><!--tex4ht:label?: x1-5300411 -->
<!--l. 242--><p class="indent" > </div><hr class="endfigure">
<!--l. 243--><p class="indent" > The footprint modules will now be imported to the top left hand corner of the layout
editor window. This is shown in Fig. <a
href="#x1-5300512">6.12<!--tex4ht:ref: netlisttop --></a>. <hr class="figure"><div class="figure"
>
<a
id="x1-5300512"></a>
<!--l. 247--><p class="noindent" ><img
src="figures/netlisttop.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.12: </span><span
class="content">Footprint modules imported to top left corner of layout editor window</span></div><!--tex4ht:label?: x1-5300512 -->
<!--l. 250--><p class="indent" > </div><hr class="endfigure">
<!--l. 251--><p class="indent" > Zoom in to the top left corner by pressing the key <span
class="cmtt-10x-x-109">F1 </span>or using the scroll button of the
mouse. The zoomed in version of the imported netlist is shown in Fig. <a
href="#x1-5300613">6.13<!--tex4ht:ref: zoom --></a>.
<!--l. 255--><p class="indent" > Let us now place this in the center of the layout editor window. <hr class="figure"><div class="figure"
>
<a
id="x1-5300613"></a>
<!--l. 259--><p class="noindent" ><img
src="figures/zoom.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.13: </span><span
class="content">Zoomed in version of the imported netlist</span></div><!--tex4ht:label?: x1-5300613 -->
<!--l. 262--><p class="indent" > </div><hr class="endfigure">
<!--l. 263--><p class="indent" > Click on <span
class="cmti-10x-x-109">Mode footprint: Manual/automatic move and place </span>tool from the top toolbar.
Place the cursor near the center of the layout editor window. Right click and choose <span
class="cmti-10x-x-109">Glob</span>
<span
class="cmti-10x-x-109">move and place</span>. Choose <span
class="cmti-10x-x-109">move all modules</span>. The sequence of operations is shown in Fig. <a
href="#x1-5300714">6.14<!--tex4ht:ref: movep --></a>.
Click on <span
class="cmti-10x-x-109">Yes </span>on the confirmation window to move the modules. Zoom in using the F1 key.
The current placement of components after zooming in is shown in Fig. <a
href="#x1-53008r1">6.15a<!--tex4ht:ref: curplace --></a>.
<hr class="figure"><div class="figure"
>
<a
id="x1-5300714"></a>
<!--l. 272--><p class="noindent" ><img
src="figures/movep.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.14: </span><span
class="content">Moving and placing modules to the center of layout editor. 1. Click on
<span
class="cmti-10x-x-109">Mode footprint: Manual/automatic move and place</span>, 2. Place cursor at center of layout
editor and right click on it 3. Choose <span
class="cmti-10x-x-109">Glob Move and Place </span>and then choose <span
class="cmti-10x-x-109">Move All</span>
<span
class="cmti-10x-x-109">Modules.</span></span></div><!--tex4ht:label?: x1-5300714 -->
<!--l. 279--><p class="indent" > </div><hr class="endfigure">
<!--l. 286--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-5301015"></a>
<a
id="x1-53008r1"></a>
<!--l. 290--><p class="noindent" > <img
src="figures/curplace.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Zoomed</span>
<span
class="cmr-9">in</span>
<span
class="cmr-9">version</span>
<span
class="cmr-9">of the</span>
<span
class="cmr-9">current</span>
<span
class="cmr-9">placement</span>
<span
class="cmr-9">after</span>
<span
class="cmr-9">moving</span>
<span
class="cmr-9">modules</span>
<span
class="cmr-9">to the</span>
<span
class="cmr-9">center</span>
<span
class="cmr-9">of the</span>
<span
class="cmr-9">layout</span>
<span
class="cmr-9">editor</span> <a
id="x1-53009r2"></a> <img
src="figures/fplace.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Final</span>
<span
class="cmr-9">placement</span>
<span
class="cmr-9">of</span>
<span
class="cmr-9">footprints</span>
<span
class="cmr-9">after</span>
<span
class="cmr-9">rotating</span>
<span
class="cmr-9">and</span>
<span
class="cmr-9">moving</span>
<span
class="cmr-9">P1</span>
<br /> <div class="caption"
><span class="id">Figure 6.15: </span><span
class="content">Different stages of placement of modules on PCB</span></div><!--tex4ht:label?: x1-5301015 -->
<!--l. 295--><p class="indent" > </div><hr class="endfigure">
<!--l. 296--><p class="indent" > We need to arrange the modules properly to lay tracks. Rotate the connector P1 by
placing the cursor on top of P1 and pressing R. Move it by placing the cursor on top of it and
pressing M. The final placement is shown in Fig. <a
href="#x1-53009r2">6.15b<!--tex4ht:ref: fplace --></a>. <a
id="dx1-53011"></a>
<!--l. 302--><p class="indent" > Let us now lay the tracks. Let us first change the track width. Click on <span
class="cmti-10x-x-109">Design rules </span>from
the top menu bar. Click on <span
class="cmti-10x-x-109">Design rules</span>. This is shown in Fig. <a
href="#x1-5301416">6.16<!--tex4ht:ref: drules --></a>. The <span
class="cmti-10x-x-109">Design Rules Editor</span>
window opens up. Here one can edit the various design rules. Double click on the track width
field to edit it. Type 0.8 and press <span
class="cmtt-10x-x-109">Enter</span>. Click on OK. Fig. <a
href="#x1-5301517">6.17<!--tex4ht:ref: druleedit --></a> shows the sequence of
operations. <a
id="dx1-53012"></a><a
id="dx1-53013"></a> <hr class="figure"><div class="figure"
>
<a
id="x1-5301416"></a>
<!--l. 312--><p class="noindent" ><img
src="figures/drules.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.16: </span><span
class="content">Choose <span
class="cmti-10x-x-109">Design Rules </span>from the top menu bar and <span
class="cmti-10x-x-109">Design Rules </span>again</span></div><!--tex4ht:label?: x1-5301416 -->
<!--l. 316--><p class="indent" > </div><hr class="endfigure">
<!--l. 317--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-5301517"></a>
<!--l. 319--><p class="noindent" ><img
src="figures/druleedit.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.17: </span><span
class="content">Changing the track width: 1. Double click on <span
class="cmti-10x-x-109">Track Width </span>field and type
0.8, 2. Click on <span
class="cmti-10x-x-109">OK</span></span></div><!--tex4ht:label?: x1-5301517 -->
<!--l. 323--><p class="indent" > </div><hr class="endfigure">
<!--l. 325--><p class="indent" > Click on <span
class="cmti-10x-x-109">Back </span>from the <span
class="cmti-10x-x-109">Layer </span>options as shown in Fig. <a
href="#x1-5301718">6.18<!--tex4ht:ref: layer --></a>. <a
id="dx1-53016"></a><hr class="figure"><div class="figure"
>
<a
id="x1-5301718"></a>
<!--l. 329--><p class="noindent" ><img
src="figures/layer.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.18: </span><span
class="content">Choosing the copper layer <span
class="cmti-10x-x-109">Back</span></span></div><!--tex4ht:label?: x1-5301718 -->
<!--l. 332--><p class="indent" > </div><hr class="endfigure">
<!--l. 333--><p class="indent" > Let us now start laying the tracks. Place the cursor above the left terminal of R1
in the layout editor window. Press the key <span
class="cmtt-10x-x-109">x</span>. Move the cursor down and double
click on the left terminal of C1. A track is formed. This is shown in Fig. <a
href="#x1-53018r1">6.19a<!--tex4ht:ref: track1 --></a>.
<hr class="figure"><div class="figure"
>
<a
id="x1-5302119"></a>
<a
id="x1-53018r1"></a>
<!--l. 341--><p class="noindent" > <img
src="figures/track1.png" alt="PIC"
>
<span
class="cmr-9">(a) A</span>
<span
class="cmr-9">track</span>
<span
class="cmr-9">formed</span>
<span
class="cmr-9">between</span>
<span
class="cmr-9">resistor</span>
<span
class="cmr-9">and</span>
<span
class="cmr-9">capacitor</span> <a
id="x1-53019r2"></a> <img
src="figures/track2.png" alt="PIC"
>
<span
class="cmr-9">(b) A</span>
<span
class="cmr-9">track</span>
<span
class="cmr-9">formed</span>
<span
class="cmr-9">between</span>
<span
class="cmr-9">capacitor</span>
<span
class="cmr-9">and</span>
<span
class="cmr-9">connector</span> <a
id="x1-53020r3"></a> <img
src="figures/track3.png" alt="PIC"
>
<span
class="cmr-9">(c) A</span>
<span
class="cmr-9">track</span>
<span
class="cmr-9">formed</span>
<span
class="cmr-9">between</span>
<span
class="cmr-9">connector</span>
<span
class="cmr-9">and</span>
<span
class="cmr-9">resistor</span>
<br /> <div class="caption"
><span class="id">Figure 6.19: </span><span
class="content">Different stages of laying tracks during PCB design</span></div><!--tex4ht:label?: x1-5302119 -->
<!--l. 349--><p class="indent" > </div><hr class="endfigure">
<!--l. 350--><p class="indent" > Similarly lay the track between capacitor C1 and connector P1 as shown in
Fig. <a
href="#x1-53019r2">6.19b<!--tex4ht:ref: track2 --></a>. The last track needs to be laid at an angle. To do so, place the cursor
above the second terminal of R1. Press the key x and move the cursor diagonally
down. Double click on the other terminal of the connector. The track will be laid
as shown in Fig. <a
href="#x1-53020r3">6.19c<!--tex4ht:ref: track3 --></a>. All tracks are now laid. The next step is to create PCB
edges.
<!--l. 358--><p class="indent" > Choose <span
class="cmti-10x-x-109">PCB</span><span
class="cmti-10x-x-109">_edges </span>from the <span
class="cmti-10x-x-109">Layer </span>options to add edges. Click on <span
class="cmti-10x-x-109">Add graphic line or</span>
<span
class="cmti-10x-x-109">polygon </span>from the toolbar on the left. Fig. <a
href="#x1-5302320">6.20<!--tex4ht:ref: pcbedges --></a> shows the sequence of operations. Let us now
start drawing edges for PCB. <a
id="dx1-53022"></a><hr class="figure"><div class="figure"
>
<a
id="x1-5302320"></a>
<!--l. 365--><p class="noindent" ><img
src="figures/pcbedges.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.20: </span><span
class="content">Creating PCB edges: 1. Choose <span
class="cmti-10x-x-109">PCB</span><span
class="cmti-10x-x-109">_Edges </span>from <span
class="cmti-10x-x-109">Layer </span>options 2. Choose
<span
class="cmti-10x-x-109">Add graphic line or polygon </span>from left toolbar</span></div><!--tex4ht:label?: x1-5302320 -->
<!--l. 370--><p class="indent" > </div><hr class="endfigure">
<!--l. 371--><p class="indent" > Click to the left of the layout. Move cursor horizontally to the right. Click once to change
orientation. Move cursor vertically down. Draw the edges as shown in Fig. <a
href="#x1-5302421">6.21<!--tex4ht:ref: pcbed --></a>. Double click
to finish drawing the edges. <hr class="figure"><div class="figure"
>
<a
id="x1-5302421"></a>
<!--l. 377--><p class="noindent" ><img
src="figures/pcbed.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.21: </span><span
class="content">PCB edges drawn</span></div><!--tex4ht:label?: x1-5302421 -->
<!--l. 380--><p class="indent" > </div><hr class="endfigure">
<!--l. 382--><p class="indent" > Click on <span
class="cmti-10x-x-109">Perform design rules check </span>from the top toolbar to check for design rules. The
<span
class="cmti-10x-x-109">DRC Control </span>window opens up. Click on <span
class="cmti-10x-x-109">Start DRC</span>. There are no errors under the <span
class="cmtt-10x-x-109">Error</span>
<span
class="cmtt-10x-x-109">messages </span>tab. Click on <span
class="cmti-10x-x-109">OK </span>to close DRC control window. Fig. <a
href="#x1-5302622">6.22<!--tex4ht:ref: drc --></a> shows the sequence of
operations. <a
id="dx1-53025"></a><hr class="figure"><div class="figure"
>
<a
id="x1-5302622"></a>
<!--l. 390--><p class="noindent" ><img
src="figures/drc.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.22: </span><span
class="content">Performing design rules check: 1. Click on <span
class="cmti-10x-x-109">Start DRC</span>, 2. Click on <span
class="cmti-10x-x-109">Ok</span></span></div><!--tex4ht:label?: x1-5302622 -->
<!--l. 394--><p class="indent" > </div><hr class="endfigure">
<!--l. 395--><p class="indent" > Click on <span
class="cmti-10x-x-109">Save board </span>on the top toolbar.
<!--l. 397--><p class="indent" > To generate Gerber files, click on <span
class="cmti-10x-x-109">File </span>from the top menu bar. Click on <span
class="cmti-10x-x-109">Plot</span>. This is shown
in Fig. <a
href="#x1-5302823">6.23<!--tex4ht:ref: plot --></a>. The plot window opens up. One can choose which layers to plot by
selecting/deselecting them from the <span
class="cmtt-10x-x-109">Layers </span>pane on the left side. One can also choose the
format used to plot them. Choose <span
class="cmti-10x-x-109">Gerber</span>. The output directory of the plots created
can also be chosen. By default, it is the project directory. Some more options can
be chosen in this window. Click on <span
class="cmti-10x-x-109">Plot</span>. The message window shows the location
in which the Gerber files are created. Click on <span
class="cmti-10x-x-109">Close</span>. This is shown in Fig. <a
href="#x1-5302924">6.24<!--tex4ht:ref: plot2 --></a>.
<a
id="dx1-53027"></a><hr class="figure"><div class="figure"
>
<a
id="x1-5302823"></a>
<!--l. 410--><p class="noindent" ><img
src="figures/plot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.23: </span><span
class="content">Choosing <span
class="cmti-10x-x-109">Plot </span>from the <span
class="cmti-10x-x-109">File </span>menu</span></div><!--tex4ht:label?: x1-5302823 -->
<!--l. 413--><p class="indent" > </div><hr class="endfigure">
<!--l. 414--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-5302924"></a>
<!--l. 416--><p class="noindent" ><img
src="figures/plot2.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 6.24: </span><span
class="content">Creating Gerber files: 1. Choose <span
class="cmti-10x-x-109">Gerber </span>as the plot format, 2. Click on
<span
class="cmti-10x-x-109">Plot</span>. Message window shows location in which Gerber files are created, 3. Click on <span
class="cmti-10x-x-109">Close</span></span></div><!--tex4ht:label?: x1-5302924 -->
<!--l. 421--><p class="indent" > </div><hr class="endfigure">
<!--l. 422--><p class="indent" > The PCB design of RC circuit is now complete. To know more about Pcbnew, refer to
<span class="cite"> [<a
href="#Xkicad">15</a>]</span> or <span class="cite"> [<a
href="#Xkicad2">16</a>]</span>.
<h2 class="chapterHead"><span class="titlemark">Chapter 7</span><br /><a
id="x1-540007"></a>Model Editor</h2>
<!--l. 4--><p class="noindent" >Spice based simulators include a feature which allows accurate modeling of semiconductor
devices such as diodes, transistors etc. eSim Model Editor provides a facility to define a new
model for devices such as <span
class="cmti-10x-x-109">diodes, MOSFET, BJT, JFET, IGBT, Magnetic core </span>etc. Model
Editor in eSim lets the user enter the values of parameters depending on the type of
device for which a model is required. The parameter values can be obtained from the
data-sheet of the device. A newly created model can be exported to the model library
and one can import it for different projects, whenever required. Model Editor also
provides a facility to edit existing models. The GUI of the model editor is as shown in
Fig. <a
href="#x1-540011">7.1<!--tex4ht:ref: modeleditor --></a>
<!--l. 15--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-540011"></a>
<!--l. 17--><p class="noindent" ><img
src="figures/modeleditor_new.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.1: </span><span
class="content">Model Editor</span></div><!--tex4ht:label?: x1-540011 -->
<!--l. 20--><p class="indent" > </div><hr class="endfigure">
<h3 class="sectionHead"><span class="titlemark">7.1 </span> <a
id="x1-550007.1"></a>Creating New Model Library </h3>
<!--l. 24--><p class="noindent" >eSim lets us create new model libraries based on the template model libraries. On selecting
<span
class="cmtt-10x-x-109">New </span>button the window is popped as shown in Fig. <a
href="#x1-550012">7.2<!--tex4ht:ref: modeleditor_new --></a>. The name has to be unique otherwise
the error message appears on the window.
<!--l. 27--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-550012"></a>
<!--l. 29--><p class="noindent" ><img
src="figures/modeleditor.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.2: </span><span
class="content">Creating New Model Library</span></div><!--tex4ht:label?: x1-550012 -->
<!--l. 32--><p class="indent" > </div><hr class="endfigure">
<!--l. 33--><p class="indent" > After the OK button is pressed the type of model library to be created is chosen by
selecting one of the types on the left hand side i.e. <span
class="cmtt-10x-x-109">Diode, BJT, MOS, JFET, IGBT,</span>
<span
class="cmtt-10x-x-109">Magnetic Core</span>. The template model library opens up in a tabular form as shown in Fig. <a
href="#x1-550023">7.3<!--tex4ht:ref: modelnew --></a>
<hr class="figure"><div class="figure"
>
<a
id="x1-550023"></a>
<!--l. 36--><p class="noindent" ><img
src="figures/modelnew.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.3: </span><span
class="content">Choosing the Template Model Library </span></div><!--tex4ht:label?: x1-550023 -->
<!--l. 39--><p class="indent" > </div><hr class="endfigure">
<!--l. 43--><p class="indent" > New parameters can be added or current parameters can be removed using <span
class="cmtt-10x-x-109">ADD</span>
and <span
class="cmtt-10x-x-109">REMOVE </span>buttons. Also the values of parameters can be changed in the table.
Adding and removing the parameters in library files is shown in the Fig. <a
href="#x1-550034">7.4<!--tex4ht:ref: modeladd --></a> and
Fig. <a
href="#x1-550045">7.5<!--tex4ht:ref: modelremove --></a>
<!--l. 45--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-550034"></a>
<!--l. 47--><p class="noindent" ><img
src="figures/modeladd.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.4: </span><span
class="content">Adding the Parameter in a Library</span></div><!--tex4ht:label?: x1-550034 -->
<!--l. 50--><p class="indent" > </div><hr class="endfigure">
<!--l. 52--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-550045"></a>
<!--l. 54--><p class="noindent" ><img
src="figures/modelremove.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.5: </span><span
class="content">Removing a Parameter from a Library </span></div><!--tex4ht:label?: x1-550045 -->
<!--l. 57--><p class="indent" > </div><hr class="endfigure">
<!--l. 59--><p class="indent" > After the editing of the model library is done, the file can be saved by selecting the <span
class="cmtt-10x-x-109">SAVE</span>
button. These libraries are saved in the <span
class="cmti-10x-x-109">User Libraries </span>folder under <span
class="cmti-10x-x-109">deviceModelLibrary</span>
repository.
<h3 class="sectionHead"><span class="titlemark">7.2 </span> <a
id="x1-560007.2"></a>Editing Current Model Library</h3>
<!--l. 62--><p class="noindent" >The existing model library can be modified using <span
class="cmtt-10x-x-109">EDIT </span>option. On clicking the <span
class="cmtt-10x-x-109">EDIT </span>button
the file dialog opens where all the library files are saved as shown in Fig. <a
href="#x1-560016">7.6<!--tex4ht:ref: modeledit --></a>. You can select
the library you want to edit. Once you are done with the editing, click on <span
class="cmtt-10x-x-109">SAVE</span>
button.
<!--l. 65--><p class="indent" > <hr class="figure"><div class="figure"
>
<a
id="x1-560016"></a>
<!--l. 67--><p class="noindent" ><img
src="figures/modeledit.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 7.6: </span><span
class="content">Editing Existing Model Library</span></div><!--tex4ht:label?: x1-560016 -->
<!--l. 70--><p class="indent" > </div><hr class="endfigure">
<h3 class="sectionHead"><span class="titlemark">7.3 </span> <a
id="x1-570007.3"></a>Uploading external .lib file to eSim repository</h3>
<!--l. 73--><p class="noindent" >eSim directly cannot use the external .lib file. It has to be uploaded to eSim repository before
using it in a circuit. eSim provides the facility to upload library files. They are then converted
into xml format, which can be easily modified from the eSim interface. On clicking <span
class="cmtt-10x-x-109">UPLOAD</span>
button the library can be uploaded from any location. The model library will be
saved with the name you have provided, in the <span
class="cmti-10x-x-109">User Libraries </span>folder of repository
<span
class="cmti-10x-x-109">deviceModelLibrary</span>.
<h2 class="chapterHead"><span class="titlemark">Chapter 8</span><br /><a
id="x1-580008"></a>SubCircuit Builder</h2> Subcircuit is a way to implement hierarchical modeling.
Once a subcircuit for a compo- nent is created, it can be used in other circuits.
eSim provides an easy way to create a subcircuit. The following Fig. <a
href="#x1-580011">8.1<!--tex4ht:ref: subcircuit_mainwin --></a> shows
the window that is opened when the SubCircuit tool is chosen from the toolbar.
<hr class="figure"><div class="figure"
>
<a
id="x1-580011"></a>
<!--l. 8--><p class="noindent" ><img
src="figures/subcirciut_window.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.1: </span><span
class="content">Subcircuit Window</span></div><!--tex4ht:label?: x1-580011 -->
<!--l. 11--><p class="noindent" ></div><hr class="endfigure">
<h3 class="sectionHead"><span class="titlemark">8.1 </span> <a
id="x1-590008.1"></a>Creating a SubCircuit</h3>
<!--l. 32--><p class="noindent" >The steps to create subcircuit are as follows.
<ul class="itemize1">
<li class="itemize">After opening the Subcircuit tool, click on <span
class="cmtt-10x-x-109">New Subcircuit Schematic </span>button.
It will ask the name of the subcircuit. Enter the name of subcircuit (without any
spaces) and click <span
class="cmtt-10x-x-109">OK </span>as shown in Fig. <a
href="#x1-590012">8.2<!--tex4ht:ref: newsubcktschematic --></a>.
<!--l. 39--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-590012"></a> <img
src="figures/newsubcktschematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.2: </span><span
class="content">New Sub circuit Window</span></div><!--tex4ht:label?: x1-590012 -->
<!--l. 44--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">After clicking <span
class="cmtt-10x-x-109">OK </span>button it will open KiCad schematic. Draw your circuit
which will be later used as a subcircuit. e.g the Fig. <a
href="#x1-590023">8.3<!--tex4ht:ref: createsubcktsch --></a> shows the half adder
circuit.
<!--l. 49--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-590023"></a> <img
src="figures/createsubcktsch.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.3: </span><span
class="content">New Sub circuit Window</span></div><!--tex4ht:label?: x1-590023 -->
<!--l. 54--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Once you complete the circuit, assign port to the node of your circuit which will be
used to connect with the main circuit. The circuit will look like Fig. <a
href="#x1-590034">8.4<!--tex4ht:ref: halfadder --></a> after
adding PORT to it. The PORT symbol can be found in Eeschema as shown in
Fig. <a
href="#x1-590045">8.5<!--tex4ht:ref: port --></a>.
<!--l. 61--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-590034"></a> <img
src="figures/ha_sub.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.4: </span><span
class="content">Half-Adder Subcircuit </span></div><!--tex4ht:label?: x1-590034 -->
<!--l. 66--><p class="noindent" ></div><hr class="endfigure">
<!--l. 69--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-590045"></a> <img
src="figures/port_lib.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.5: </span><span
class="content">Selection of PORT component</span></div><!--tex4ht:label?: x1-590045 -->
<!--l. 74--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Next step is to save the schematic and generate KiCad netlist as explained in Chapter
5.
</li>
<li class="itemize">To use this as a subcircuit, create a block in KiCad Eeschema by following steps given
below:
<dl class="enumerate"><dt class="enumerate">
1. </dt><dd
class="enumerate">Go to library browser of Eeschema.
</dd><dt class="enumerate">
2. </dt><dd
class="enumerate">Select the working library as eSim_Subckt as shown in Fig. <a
href="#x1-590076">8.6<!--tex4ht:ref: esimsubckt --></a> <hr class="figure"><div class="figure"
><a
id="x1-590076"></a> <img
src="figures/esim-subckt.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.6: </span><span
class="content">Selecting Working Library</span></div><!--tex4ht:label?: x1-590076 -->
<!--l. 90--><p class="noindent" ></div><hr class="endfigure">
</dd><dt class="enumerate">
3. </dt><dd
class="enumerate">Click on create a new component with reference X as shown in Fig. <a
href="#x1-590097">8.7<!--tex4ht:ref: subcktnewcomp --></a> <hr class="figure"><div class="figure"
><a
id="x1-590097"></a>
<img
src="figures/subcktnewcomp.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.7: </span><span
class="content">Creating New Component</span></div><!--tex4ht:label?: x1-590097 -->
<!--l. 99--><p class="noindent" ></div><hr class="endfigure">
</dd><dt class="enumerate">
4. </dt><dd
class="enumerate">Start drawing the subcircuit block. Update and save it as shown in Fig. <a
href="#x1-590118">8.8<!--tex4ht:ref: block --></a>.
<!--l. 104--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-590118"></a> <img
src="figures/halfadderblock.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 8.8: </span><span
class="content">Half-Adder Subcircuit Block</span></div><!--tex4ht:label?: x1-590118 -->
<!--l. 109--><p class="noindent" ></div><hr class="endfigure">
</dd></dl>
</li>
<li class="itemize">Close the Eeschema window and click on Convert KiCad to Ngspice button in subcircuit
builder tool. This will convert the KiCad spice netlist to Ngspice netlist. And it will
save your subcircuit into eSim repository, which you can add in your main
circuit.
</li></ul>
<!--l. 120--><p class="noindent" >
<h3 class="sectionHead"><span class="titlemark">8.2 </span> <a
id="x1-600008.2"></a>Edit a Subcircuit</h3>
<!--l. 121--><p class="noindent" >The steps to edit a subcircuit are as follows.
<ul class="itemize1">
<li class="itemize">After opening the Subcircuit tool, click on <span
class="cmtt-10x-x-109">Edit Subcircuit Schematic </span>button.
It will open a dialog box where you can select any subcircuit for editing.
</li>
<li class="itemize">After selecting the subcircuit it will open it in KiCad Eeschema, where you can
edit the subcircuit.
</li>
<li class="itemize">Next step is to save the schematic and generate KiCad netlist.
</li>
<li class="itemize">If you have edited the number of ports then you have to change the block in KiCad
Eeschema accordingly.
</li>
<li class="itemize">Close the Eeschema window and click on <span
class="cmtt-10x-x-109">Convert KiCad to Ngspice </span>button in
subcircuit builder tool to convert the edited subcircuit KiCad netlist into Ngspice
netlist.
</li></ul>
<h2 class="chapterHead"><span class="titlemark">Chapter 9</span><br /><a
id="x1-610009"></a>Solved Examples</h2>
<h3 class="sectionHead"><span class="titlemark">9.1 </span> <a
id="x1-620009.1"></a>Solved Examples</h3>
<!--l. 8--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">9.1.1 </span> <a
id="x1-630009.1.1"></a>Basic RC Circuit</h4>
<!--l. 9--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-640009.1.1"></a>Problem Statement:</h5>
<!--l. 9--><p class="noindent" >Plot the Input and Output Waveform of an RC circuit whose input voltage (Vs) is 50Hz,
3V peak to peak. The values of Resistor (R) and Capacitor(C) are 1<span
class="cmmi-10x-x-109">k </span>and 1<span
class="cmmi-10x-x-109">uf</span>
respectively.
<h5 class="subsubsectionHead"><a
id="x1-650009.1.1"></a>Solution:</h5>
<ul class="itemize1">
<li class="itemize">Creating a Project: The new project is created by clicking the <span
class="cmtt-10x-x-109">New </span>icon on the
menubar. The name of the project is given in the pop up window as shown in
Fig. <a
href="#x1-650011">9.1<!--tex4ht:ref: rc1 --></a>. <hr class="figure"><div class="figure"
><a
id="x1-650011"></a> <img
src="figures/rc1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.1: </span><span
class="content">Creating New Project</span></div><!--tex4ht:label?: x1-650011 -->
<!--l. 20--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Creating the Schematic: To create the schematic, click the very first icon of the left
toolbar as shown in the Fig. <a
href="#x1-650022">9.2<!--tex4ht:ref: rc2 --></a>. This will open KiCad Eeschema.
<!--l. 25--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-650022"></a> <img
src="figures/rc2.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.2: </span><span
class="content">Open Schematic Editor</span></div><!--tex4ht:label?: x1-650022 -->
<!--l. 31--><p class="noindent" ></div><hr class="endfigure">
<!--l. 33--><p class="noindent" >To create a schematic in KiCad, we need to place the required components. Fig. <a
href="#x1-650033">9.3<!--tex4ht:ref: rc_component --></a>
shows the icon on the right toolbar which opens the component library.
<!--l. 35--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-650033"></a> <img
src="figures/rc_component.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.3: </span><span
class="content">Place Component Icon</span></div><!--tex4ht:label?: x1-650033 -->
<!--l. 41--><p class="noindent" ></div><hr class="endfigure">
<!--l. 45--><p class="noindent" >After all the required components of the simple RC circuit are placed, wiring is done
using the <span
class="cmtt-10x-x-109">Place Wire </span>option as shown in the Fig. <a
href="#x1-650044">9.4<!--tex4ht:ref: rc_wire --></a>
<!--l. 47--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-650044"></a> <img
src="figures/rc_wire.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.4: </span><span
class="content">Place Wire Icon</span></div><!--tex4ht:label?: x1-650044 -->
<!--l. 53--><p class="noindent" ></div><hr class="endfigure">
<!--l. 55--><p class="noindent" >Next step is <span
class="cmtt-10x-x-109">ERC (Electric Rules Check)</span>. Fig. <a
href="#x1-650055">9.5<!--tex4ht:ref: erc1 --></a> shows the icon for <span
class="cmtt-10x-x-109">ERC</span>.
<!--l. 57--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-650055"></a> <img
src="figures/erc1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.5: </span><span
class="content">Electric Rules Check Icon</span></div><!--tex4ht:label?: x1-650055 -->
<!--l. 63--><p class="noindent" ></div><hr class="endfigure">
<!--l. 65--><p class="noindent" >Fig. <a
href="#x1-650066">9.6<!--tex4ht:ref: rc_complete1 --></a> shows the RC circuit after connecting the components by wire.
<!--l. 67--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-650066"></a> <img
src="figures/rc_complete1.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.6: </span><span
class="content">RC circuit</span></div><!--tex4ht:label?: x1-650066 -->
<!--l. 72--><p class="noindent" ></div><hr class="endfigure">
<!--l. 76--><p class="noindent" >After clicking the <span
class="cmtt-10x-x-109">ERC </span>icon a window opens up. Click the <span
class="cmtt-10x-x-109">Run </span>button to run rules check.
The errors are listed in as shown in Fig. <a
href="#x1-65007r1">9.7a<!--tex4ht:ref: erc2 --></a>. This error is handled by adding <span
class="cmtt-10x-x-109">Power</span>
<span
class="cmtt-10x-x-109">Flag </span>as shown in Fig. <a
href="#x1-65008r2">9.7b<!--tex4ht:ref: rc_pwr --></a>.
<!--l. 78--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-650097"></a> <a
id="x1-65007r1"></a> <img
src="figures/erc2.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">ERC</span>
<span
class="cmr-9">Run</span> <a
id="x1-65008r2"></a> <img
src="figures/rc_pwr.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Power</span>
<span
class="cmr-9">Flag</span>
<br /> <div class="caption"
><span class="id">Figure 9.7: </span><span
class="content">ERC check and POWER FLAG</span></div><!--tex4ht:label?: x1-650097 -->
<!--l. 87--><p class="noindent" ></div><hr class="endfigure">
<!--l. 89--><p class="noindent" >After adding the <span
class="cmtt-10x-x-109">Power Flag </span>the completed RC circuit is shown in Fig. <a
href="#x1-65010r1">9.8a<!--tex4ht:ref: rc_schematic --></a> and the
netlist is generated as shown in Fig. <a
href="#x1-65011r2">9.8b<!--tex4ht:ref: rc_netlist --></a>.
<!--l. 92--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-650128"></a> <a
id="x1-65010r1"></a> <img
src="figures/rc_schematic.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Schematic</span>
<span
class="cmr-9">of RC</span>
<span
class="cmr-9">circuit</span> <a
id="x1-65011r2"></a> <img
src="figures/rc_netlistgeneration.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Generating</span>
<span
class="cmr-9">KiCad</span>
<span
class="cmr-9">Netlist</span>
<span
class="cmr-9">of RC</span>
<span
class="cmr-9">circuit</span>
<br /> <div class="caption"
><span class="id">Figure 9.8: </span><span
class="content">RC Schematic and Netlist Generation</span></div><!--tex4ht:label?: x1-650128 -->
<!--l. 101--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Convert KiCad to Ngspice: To convert KiCad netlist of RC circuit to NgSpice
compatible netlist click on KiCad to Ngspice icon as shown in Fig. <a
href="#x1-650139">9.9<!--tex4ht:ref: rcki2ng --></a>.
<!--l. 107--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-650139"></a> <img
src="figures/rc_ki2ng.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.9: </span><span
class="content">Convert KiCad to Ngspice Icon</span></div><!--tex4ht:label?: x1-650139 -->
<!--l. 112--><p class="noindent" ></div><hr class="endfigure">
<!--l. 114--><p class="noindent" >Now you can enter the type of analysis and source details as shown in Fig. <a
href="#x1-65014r1">9.10a<!--tex4ht:ref: rc_analysistab --></a> and
Fig. <a
href="#x1-65015r2">9.10b<!--tex4ht:ref: rc_sourcedetailstab --></a> respectively.
<!--l. 116--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-6501610"></a> <a
id="x1-65014r1"></a> <img
src="figures/rc_analysistab.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">RC</span>
<span
class="cmr-9">Analysis</span> <a
id="x1-65015r2"></a> <img
src="figures/rc_sourcedetailstab.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">RC</span>
<span
class="cmr-9">Source</span>
<span
class="cmr-9">Details</span>
<br /> <div class="caption"
><span class="id">Figure 9.10: </span><span
class="content">RC Analysis and Source Detail</span></div><!--tex4ht:label?: x1-6501610 -->
<!--l. 125--><p class="noindent" ></div><hr class="endfigure">
<!--l. 126--><p class="noindent" >The other tab will be empty as RC circuit do not use any Ngspice model, device library
and subcircuit.
<!--l. 128--><p class="noindent" >After entering the value, press the convert button. It will convert the netlist into
Ngspice compatible netlist.
</li>
<li class="itemize">Simulation: To run Ngspice simulation click the simulation icon in the tool bar
as shown in the Fig. <a
href="#x1-6501711">9.11<!--tex4ht:ref: rcplot --></a>. <hr class="figure"><div class="figure"
><a
id="x1-6501711"></a> <img
src="figures/rc_plot.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.11: </span><span
class="content">Simulation Icon</span></div><!--tex4ht:label?: x1-6501711 -->
<!--l. 139--><p class="noindent" ></div><hr class="endfigure">
<!--l. 141--><p class="noindent" >In eSim, there are two types of plot. First is normal Ngspice plot and second is
interactive python plot as shown in Fig. <a
href="#x1-65018r1">9.12a<!--tex4ht:ref: rc_ngspiceplot --></a> and Fig. <a
href="#x1-65019r2">9.12b<!--tex4ht:ref: rc_pythonplot --></a> respectively.
<!--l. 143--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-6502012"></a> <a
id="x1-65018r1"></a> <img
src="figures/rc_ngspiceplot.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Ngspice</span>
<span
class="cmr-9">Plot</span>
<span
class="cmr-9">of RC</span> <a
id="x1-65019r2"></a> <img
src="figures/rc_pythonplot.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Python</span>
<span
class="cmr-9">Plot</span>
<span
class="cmr-9">of RC</span>
<br /> <div class="caption"
><span class="id">Figure 9.12: </span><span
class="content">Ngspice and Interactive Python Plotting</span></div><!--tex4ht:label?: x1-6502012 -->
<!--l. 152--><p class="noindent" ></div><hr class="endfigure">
<!--l. 154--><p class="noindent" >In the interactive python plot you can select any node or branch to plot voltage or
current across it. Also it has the facility to plot basic functions across the node like
addition, substraction, multiplication, division and v/s.
</li></ul>
<!--l. 160--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">9.1.2 </span> <a
id="x1-660009.1.2"></a>Half Wave Rectifier</h4>
<!--l. 162--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-670009.1.2"></a>Problem Statement:</h5>
<!--l. 162--><p class="noindent" >Plot the Input and Output Waveform of Half Wave Rectifier circuit where the input voltage
(Vs) is 50Hz, 2V peak to peak. The value for Resistor (R) is 1k.
<!--l. 164--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-680009.1.2"></a>Solution:</h5>
<!--l. 165--><p class="noindent" >The new project is created by clicking the <span
class="cmtt-10x-x-109">New </span>icon on the menubar. The name of the project
is given in the window shown in Fig. <a
href="#x1-650011">9.1<!--tex4ht:ref: rc1 --></a>.
<ul class="itemize1">
<li class="itemize">Creating Schematic: To create the schematic, click the very first icon of the left
toolbar as shown in the Fig. <a
href="#x1-650022">9.2<!--tex4ht:ref: rc2 --></a>. This will open KiCad Eeschema.<br
class="newline" />
<!--l. 171--><p class="noindent" >After the KiCad window is opened, to create a schematic we need to place the
required components. Fig. <a
href="#x1-650033">9.3<!--tex4ht:ref: rc_component --></a> shows the icon on the right toolbar which opens
the component library.<br
class="newline" />
<!--l. 174--><p class="noindent" >After all the required components of the simple Half Wave rectifier circuits are
placed, wiring is done using the <span
class="cmtt-10x-x-109">Place Wire </span>option as shown in the Fig. <a
href="#x1-650044">9.4<!--tex4ht:ref: rc_wire --></a><br
class="newline" />
<!--l. 176--><p class="noindent" >Next step is <span
class="cmtt-10x-x-109">ERC (Electric Rules Check)</span>. Fig. <a
href="#x1-650055">9.5<!--tex4ht:ref: erc1 --></a> shows the icon for <span
class="cmtt-10x-x-109">ERC</span>. After
completing all the above steps the final Half Wave Rectifier schematic will look
like Fig. <a
href="#x1-6800113">9.13<!--tex4ht:ref: hwr_schematic --></a>.<br
class="newline" />
<!--l. 178--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-6800113"></a> <img
src="figures/hwr_schematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.13: </span><span
class="content">Schematic of Half Wave Rectifier circuit</span></div><!--tex4ht:label?: x1-6800113 -->
<!--l. 183--><p class="noindent" ></div><hr class="endfigure">
<!--l. 187--><p class="noindent" >KiCad netlist is generated as shown in the Fig. <a
href="#x1-6800214">9.14<!--tex4ht:ref: hwr_netlistgeneration --></a> <br
class="newline" />
<!--l. 189--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-6800214"></a> <img
src="figures/hwr_netlistgeneration.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.14: </span><span
class="content">Half Wave Rectifier circuit Netlist Generation</span></div><!--tex4ht:label?: x1-6800214 -->
<!--l. 194--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Convert KiCad to Ngspice: After creating KiCad netlist, click on the <span
class="cmtt-10x-x-109">KiCad-Ngspice</span>
<span
class="cmtt-10x-x-109">converter </span>button. This will open converter window where you can enter details of
Analysis, Source values and Device library.
<!--l. 198--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-6800615"></a> <a
id="x1-68003r1"></a> <img
src="figures/hwr_analysistab.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Wave</span>
<span
class="cmr-9">Rectifier</span>
<span
class="cmr-9">Analysis</span> <a
id="x1-68004r2"></a> <img
src="figures/hwr_sourcedetailstab.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Wave</span>
<span
class="cmr-9">Rectifier</span>
<span
class="cmr-9">Source</span>
<span
class="cmr-9">Details</span> <a
id="x1-68005r3"></a> <img
src="figures/hwr_devicemodelingtab.png" alt="PIC"
>
<span
class="cmr-9">(c)</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Wave</span>
<span
class="cmr-9">Rectifier</span>
<span
class="cmr-9">Device</span>
<span
class="cmr-9">Modeling</span>
<br /> <div class="caption"
><span class="id">Figure 9.15: </span><span
class="content">Analysis, Source and Device Tab</span></div><!--tex4ht:label?: x1-6800615 -->
<!--l. 210--><p class="noindent" ></div><hr class="endfigure">
<!--l. 212--><p class="noindent" >Under device library you can add the library for diode used in the circuit. If you do not
add any library it will take default Ngspice model.
</li>
<li class="itemize">Simulation: Once the KiCad-Ngspice converter runs successfully, you can run
simulation by clicking the simulation button in the toolbar. <hr class="figure"><div class="figure"
><a
id="x1-6800916"></a> <a
id="x1-68007r1"></a> <img
src="figures/hwr_ngspiceplot.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Ngspice</span>
<span
class="cmr-9">Plot</span>
<span
class="cmr-9">of</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Wave</span>
<span
class="cmr-9">Rectifier</span> <a
id="x1-68008r2"></a> <img
src="figures/hwr_pythonplot.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Python</span>
<span
class="cmr-9">Plot</span>
<span
class="cmr-9">of</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Wave</span>
<span
class="cmr-9">Rectifier</span>
<br /> <div class="caption"
><span class="id">Figure 9.16: </span><span
class="content">Half Wave Rectifier Simulation Output</span></div><!--tex4ht:label?: x1-6800916 -->
<!--l. 225--><p class="noindent" ></div><hr class="endfigure">
</li></ul>
<!--l. 232--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">9.1.3 </span> <a
id="x1-690009.1.3"></a>Precision Rectifier</h4>
<!--l. 233--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-700009.1.3"></a>Problem Statement:</h5>
<!--l. 233--><p class="noindent" >Plot the input and output waveform of the Precision Rectifier circuit where input voltage
(Vs) is 50<span
class="cmmi-10x-x-109">Hz </span>, 3<span
class="cmmi-10x-x-109">V </span>peak to peak.
<!--l. 235--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-710009.1.3"></a>Solution:</h5>
<!--l. 236--><p class="noindent" >The new project is created by clicking the <span
class="cmtt-10x-x-109">New </span>icon on the menubar. The name of the project
is given as shown in the Fig. <a
href="#x1-650011">9.1<!--tex4ht:ref: rc1 --></a>.
<ul class="itemize1">
<li class="itemize">Creating Schematic: To create the schematic, click the very first icon of the left
toolbar as shown in the Fig. <a
href="#x1-650022">9.2<!--tex4ht:ref: rc2 --></a>. This will open KiCad Eeschema.<br
class="newline" />After the KiCad window is opened, to create a schematic we need to place the
required components. Fig. <a
href="#x1-650033">9.3<!--tex4ht:ref: rc_component --></a> shows the icon on the right toolbar which opens
the component library.<br
class="newline" />After all the required components of the precision rectifier circuit are placed,
wiring is done using the <span
class="cmtt-10x-x-109">Place Wire </span>option as shown in the Fig. <a
href="#x1-650044">9.4<!--tex4ht:ref: rc_wire --></a>.<br
class="newline" />Next step is <span
class="cmtt-10x-x-109">ERC (Electric Rules Check)</span>. Fig. <a
href="#x1-650055">9.5<!--tex4ht:ref: erc1 --></a> shows the icon for <span
class="cmtt-10x-x-109">ERC</span>. The
Fig. <a
href="#x1-7100117">9.17<!--tex4ht:ref: pr_schematic --></a> shows the complete Precision Rectifier schematic after removing the
errors.
<!--l. 246--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-7100117"></a> <img
src="figures/pr_schematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.17: </span><span
class="content">Schematic of Precision Rectifier circuit</span></div><!--tex4ht:label?: x1-7100117 -->
<!--l. 251--><p class="noindent" ></div><hr class="endfigure">
<!--l. 253--><p class="noindent" >The KiCad netlist is generated as shown in Fig. <a
href="#x1-7100218">9.18<!--tex4ht:ref: pr_netlistgeneration --></a>.<br
class="newline" />
<!--l. 255--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-7100218"></a> <img
src="figures/pr_netlistgeneration.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.18: </span><span
class="content">Precision Rectifier circuit Netlist Generation</span></div><!--tex4ht:label?: x1-7100218 -->
<!--l. 260--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Convert KiCad to Ngspice: After creating KiCad netlist, click on KiCad-Ngspice
converter button.<br
class="newline" />
<!--l. 266--><p class="noindent" >This will open converter window where you can enter details of Analysis, Source values,
Device library and Subcircuit.
<!--l. 268--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-7100719"></a> <a
id="x1-71003r1"></a> <img
src="figures/pr_analysistab.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Precision</span>
<span
class="cmr-9">Rectifier</span>
<span
class="cmr-9">Analysis</span> <a
id="x1-71004r2"></a> <img
src="figures/pr_sourcedetailstab.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Precision</span>
<span
class="cmr-9">Rectifier</span>
<span
class="cmr-9">Source</span>
<span
class="cmr-9">Details</span>
<a
id="x1-71005r3"></a>
<!--l. 278--><p class="noindent" > <img
src="figures/pr_devicemodelingtab.png" alt="PIC"
>
<span
class="cmr-9">(c)</span>
<span
class="cmr-9">Precision</span>
<span
class="cmr-9">Rectifier</span>
<span
class="cmr-9">Device</span>
<span
class="cmr-9">Modeling</span> <a
id="x1-71006r4"></a> <img
src="figures/pr_subcircuitstab.png" alt="PIC"
>
<span
class="cmr-9">(d)</span>
<span
class="cmr-9">Precision</span>
<span
class="cmr-9">Rectifier</span>
<span
class="cmr-9">Subcircuit</span>
<br /> <div class="caption"
><span class="id">Figure 9.19: </span><span
class="content">Analysis, Source, Device library and Subcircuit tab</span></div><!--tex4ht:label?: x1-7100719 -->
<!--l. 283--><p class="noindent" ></div><hr class="endfigure">
<!--l. 285--><p class="noindent" >Under device library you can add the library for the diode used in the circuit. If you do
not add any library it will take default Ngspice model for diode.<br
class="newline" />
<!--l. 288--><p class="noindent" >Under subcircuit tab you have to add the subciruit used in your circuit. If you forget to
add subcircuit it will throw an error.
</li>
<li class="itemize">Simulation: Once the KiCad-Ngspice converter runs successfully, you can run the
simulation by clicking the simulation button in the toolbar. <hr class="figure"><div class="figure"
><a
id="x1-7101020"></a> <a
id="x1-71008r1"></a> <img
src="figures/pr_ngspiceplot.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Ngspice</span>
<span
class="cmr-9">Plot</span>
<span
class="cmr-9">of</span>
<span
class="cmr-9">Precision</span>
<span
class="cmr-9">Rectifier</span> <a
id="x1-71009r2"></a> <img
src="figures/pr_pythonplot.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Python</span>
<span
class="cmr-9">Plot</span>
<span
class="cmr-9">of</span>
<span
class="cmr-9">Precision</span>
<span
class="cmr-9">Rectifier</span>
<br /> <div class="caption"
><span class="id">Figure 9.20: </span><span
class="content">Precision Rectifier Simulation Output</span></div><!--tex4ht:label?: x1-7101020 -->
<!--l. 302--><p class="noindent" ></div><hr class="endfigure">
</li></ul>
<!--l. 309--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">9.1.4 </span> <a
id="x1-720009.1.4"></a>Inverting Amplifier</h4>
<!--l. 310--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-730009.1.4"></a>Problem Statement:</h5>
<!--l. 311--><p class="noindent" >Plot the Input and Output Waveform of Inverting Amplifier circuit where the input voltage
(Vs) is 50<span
class="cmmi-10x-x-109">Hz</span>, 2<span
class="cmmi-10x-x-109">V </span>peak to peak and gain is 2.
<h5 class="subsubsectionHead"><a
id="x1-740009.1.4"></a>Solution:</h5>
<ul class="itemize1">
<li class="itemize">Creating Schematic: To create the schematic, click the very first icon of the left
toolbar as shown in the Fig. <a
href="#x1-650022">9.2<!--tex4ht:ref: rc2 --></a>. This will open KiCad Eeschema.<br
class="newline" />After the KiCad window is opened, to create a schematic we need to place the
required components. Fig. <a
href="#x1-650033">9.3<!--tex4ht:ref: rc_component --></a> shows the icon on the right toolbar which opens
the component library.<br
class="newline" />After all the required components of the inverting amplifier circuit are placed,
wiring is done using the <span
class="cmtt-10x-x-109">Place Wire </span>option as shown in the Fig. <a
href="#x1-650044">9.4<!--tex4ht:ref: rc_wire --></a>.<br
class="newline" />Next step is <span
class="cmtt-10x-x-109">ERC (Electric Rules Check)</span>. Fig. <a
href="#x1-650055">9.5<!--tex4ht:ref: erc1 --></a> shows the icon for <span
class="cmtt-10x-x-109">ERC</span>.
<!--l. 321--><p class="noindent" >The Fig. <a
href="#x1-7400121">9.21<!--tex4ht:ref: ia_schematic --></a> shows the complete Precision Rectifier schematic after removing
the errors.
<!--l. 323--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-7400121"></a> <img
src="figures/ia_schematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.21: </span><span
class="content">Schematic of Inverting Amplifier circuit</span></div><!--tex4ht:label?: x1-7400121 -->
<!--l. 328--><p class="noindent" ></div><hr class="endfigure">
<!--l. 330--><p class="noindent" >The KiCad netlist is generated as shown in Fig. <a
href="#x1-7400222">9.22<!--tex4ht:ref: ia_netlistgeneration --></a>.<br
class="newline" /><hr class="figure"><div class="figure"
><a
id="x1-7400222"></a> <img
src="figures/ia_netlistgeneration.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.22: </span><span
class="content">Inverting Amplifier circuit Netlist Generation</span></div><!--tex4ht:label?: x1-7400222 -->
<!--l. 336--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Convert KiCad to Ngspice: After creating KiCad netlist, click on KiCad-Ngspice
converter button.<br
class="newline" />
<!--l. 342--><p class="noindent" >This will open converter window where you can enter details of Analysis, Source values,
Device library and Subcircuit.
<!--l. 344--><p class="noindent" >Subcircuit of Op-Amp is shown in Fig. <a
href="#x1-74006r4">9.23d<!--tex4ht:ref: ia_sub --></a> <hr class="figure"><div class="figure"
><a
id="x1-7400723"></a> <a
id="x1-74003r1"></a> <img
src="figures/ia_analysistab.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Inverting</span>
<span
class="cmr-9">Amplifier</span>
<span
class="cmr-9">Analysis</span> <a
id="x1-74004r2"></a> <img
src="figures/ia_sourcedetailstab.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Inverting</span>
<span
class="cmr-9">Amplifier</span>
<span
class="cmr-9">Source</span>
<span
class="cmr-9">Details</span>
<a
id="x1-74005r3"></a>
<!--l. 355--><p class="noindent" > <img
src="figures/ia_subcircuitstab.png" alt="PIC"
>
<span
class="cmr-9">(c)</span>
<span
class="cmr-9">Inverting</span>
<span
class="cmr-9">Amplifier</span>
<span
class="cmr-9">Subcircuit</span> <a
id="x1-74006r4"></a> <img
src="figures/ia_sub.png" alt="PIC"
>
<span
class="cmr-9">(d)</span>
<span
class="cmr-9">Sub-Circuit</span>
<span
class="cmr-9">of</span>
<span
class="cmr-9">Op-Amp</span>
<br /> <div class="caption"
><span class="id">Figure 9.23: </span><span
class="content">Analysis, Source, and Subcircuit tab</span></div><!--tex4ht:label?: x1-7400723 -->
<!--l. 360--><p class="noindent" ></div><hr class="endfigure">
<!--l. 363--><p class="noindent" >Under subcircuit tab you have to add the subciruit used in your circuit. If you forget to
add subcircuit, it will throw an error.<br
class="newline" />
</li>
<li class="itemize">Simulation: Once the KiCad-Ngspice converter runs successfully, you can run
simulation by clicking the simulation button in the toolbar. <hr class="figure"><div class="figure"
><a
id="x1-7401024"></a> <a
id="x1-74008r1"></a> <img
src="figures/ia_ngspiceplot.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Inverting</span>
<span
class="cmr-9">Amplifier</span>
<span
class="cmr-9">Ngspice</span>
<span
class="cmr-9">Plot</span>
<a
id="x1-74009r2"></a>
<!--l. 374--><p class="noindent" > <img
src="figures/ia_pythonplot.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Inverting</span>
<span
class="cmr-9">Amplifier</span>
<span
class="cmr-9">Python</span>
<span
class="cmr-9">Plot</span>
<br /> <div class="caption"
><span class="id">Figure 9.24: </span><span
class="content">Inverting Amplifier Simulation Output</span></div><!--tex4ht:label?: x1-7401024 -->
<!--l. 376--><p class="noindent" ></div><hr class="endfigure">
</li></ul>
<!--l. 386--><p class="noindent" >
<h4 class="subsectionHead"><span class="titlemark">9.1.5 </span> <a
id="x1-750009.1.5"></a>Half Adder Example</h4>
<!--l. 388--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-760009.1.5"></a>Problem Statement:</h5>
<!--l. 388--><p class="noindent" >Plot the Input and Output Waveform of Half Adder circuit.
<!--l. 390--><p class="noindent" >
<h5 class="subsubsectionHead"><a
id="x1-770009.1.5"></a>Solution:</h5>
<ul class="itemize1">
<li class="itemize">Creating Schematic: To create the schematic, click the very first icon of the left
toolbar as shown in the Fig. <a
href="#x1-650022">9.2<!--tex4ht:ref: rc2 --></a>. This will open KiCad Eeschema.<br
class="newline" />After the KiCad window is opened, to create a schematic we need to place the
required components. Fig. <a
href="#x1-650033">9.3<!--tex4ht:ref: rc_component --></a> shows the icon on the right toolbar which opens
the component library.<br
class="newline" />After all the required components of the Half Adder circuit are placed, wiring is
done using the <span
class="cmtt-10x-x-109">Place Wire </span>option as shown in the Fig. <a
href="#x1-650044">9.4<!--tex4ht:ref: rc_wire --></a>.<br
class="newline" />Next step is <span
class="cmtt-10x-x-109">ERC (Electric Rules Check)</span>. Fig. <a
href="#x1-650055">9.5<!--tex4ht:ref: erc1 --></a> shows the icon for <span
class="cmtt-10x-x-109">ERC</span>.
<!--l. 399--><p class="noindent" >The Fig. <a
href="#x1-7700125">9.25<!--tex4ht:ref: ha_schematic --></a> shows the complete Half Adder schematic after removing the
errors. <hr class="figure"><div class="figure"
><a
id="x1-7700125"></a> <img
src="figures/ha_schematic.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.25: </span><span
class="content">Schematic of Half Adder circuit</span></div><!--tex4ht:label?: x1-7700125 -->
<!--l. 405--><p class="noindent" ></div><hr class="endfigure">
<!--l. 407--><p class="noindent" >The KiCad netlist is generated as shown in Fig. <a
href="#x1-7700226">9.26<!--tex4ht:ref: ha_netlistgeneration --></a>.<br
class="newline" /><hr class="figure"><div class="figure"
><a
id="x1-7700226"></a> <img
src="figures/ha_netlistgeneration.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.26: </span><span
class="content">Half Adder circuit Netlist Generation</span></div><!--tex4ht:label?: x1-7700226 -->
<!--l. 413--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Convert KiCad to Ngspice: After creating KiCad netlist click on KiCad-Ngspice
converter button.<br
class="newline" />
<!--l. 420--><p class="noindent" >This will open converter window where you can enter details of Analysis, Source values,
Ngspice model and Subcircuit.
<!--l. 422--><p class="noindent" ><hr class="figure"><div class="figure"
><a
id="x1-7700727"></a> <a
id="x1-77003r1"></a> <img
src="figures/ha_analysistab.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Adder</span>
<span
class="cmr-9">Analysis</span> <a
id="x1-77004r2"></a> <img
src="figures/ha_sourcedetailstab.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Adder</span>
<span
class="cmr-9">Source</span>
<span
class="cmr-9">Details</span>
<a
id="x1-77005r3"></a>
<!--l. 432--><p class="noindent" > <img
src="figures/ha_ngspicemodeltab.png" alt="PIC"
>
<span
class="cmr-9">(c)</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Adder</span>
<span
class="cmr-9">Ngspice</span>
<span
class="cmr-9">Model</span> <a
id="x1-77006r4"></a> <img
src="figures/ha_subcircuitstab.png" alt="PIC"
>
<span
class="cmr-9">(d)</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Adder</span>
<span
class="cmr-9">Subcircuit</span>
<span
class="cmr-9">Model</span>
<br /> <div class="caption"
><span class="id">Figure 9.27: </span><span
class="content">Analysis, Source, Ngspice Model and Subcircuit tab</span></div><!--tex4ht:label?: x1-7700727 -->
<!--l. 437--><p class="noindent" ></div><hr class="endfigure">
<!--l. 439--><p class="noindent" >Subcircuit of Half Adder in Fig. <a
href="#x1-7700828">9.28<!--tex4ht:ref: ha_sub --></a> <hr class="figure"><div class="figure"
><a
id="x1-7700828"></a> <img
src="figures/ha_sub.png" alt="PIC"
>
<br /> <div class="caption"
><span class="id">Figure 9.28: </span><span
class="content">Half Adder Subcircuit</span></div><!--tex4ht:label?: x1-7700828 -->
<!--l. 445--><p class="noindent" ></div><hr class="endfigure">
</li>
<li class="itemize">Simulation: Once the KiCad-Ngspice converter runs successfully, you can run
simulation by clicking the simulation button in the toolbar. <hr class="figure"><div class="figure"
><a
id="x1-7701129"></a> <a
id="x1-77009r1"></a> <img
src="figures/ha_ngspiceplot.png" alt="PIC"
>
<span
class="cmr-9">(a)</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Adder</span>
<span
class="cmr-9">Ngspice</span>
<span
class="cmr-9">Plot</span> <a
id="x1-77010r2"></a> <img
src="figures/ha_pythonplot.png" alt="PIC"
>
<span
class="cmr-9">(b)</span>
<span
class="cmr-9">Half</span>
<span
class="cmr-9">Adder</span>
<span
class="cmr-9">Python</span>
<span
class="cmr-9">Plot</span>
<br /> <div class="caption"
><span class="id">Figure 9.29: </span><span
class="content">Half Adder Simulation Output</span></div><!--tex4ht:label?: x1-7701129 -->
<!--l. 459--><p class="noindent" ></div><hr class="endfigure">
</li></ul>
<h2 class="likechapterHead"><a
id="x1-780009.1.5"></a>References</h2><a
id="Q1-1-166"></a>
<div class="thebibliography">
<p class="bibitem" ><span class="biblabel">
[1]<span class="bibsp">   </span></span><a
id="Xsedra"></a>A. S. Sedra and K. C. Smith, <span
class="cmti-10x-x-109">Microelectronic Circuits - Theory and</span>
<span
class="cmti-10x-x-109">Applications</span>. Oxford University Press, 2009.
</p>
<p class="bibitem" ><span class="biblabel">
[2]<span class="bibsp">   </span></span><a
id="Xkmm11-csi"></a>K. M. Moudgalya, “Spoken Tutorial: A Collaborative and Scalable Education
Technology,” <span
class="cmti-10x-x-109">CSI Communications</span>, vol. 35, no. 6, pp. 10–12, September 2011,
available at <a
href="http://spoken-tutorial.org/CSI.pdf" class="url" >http://spoken-tutorial.org/CSI.pdf</a>.
</p>
<p class="bibitem" ><span class="biblabel">
[3]<span class="bibsp">   </span></span><a
id="Xscilab"></a>(2013, May). [Online]. Available: <a
href="http://www.scilab.org/" class="url" >http://www.scilab.org/</a>
</p>
<p class="bibitem" ><span class="biblabel">
[4]<span class="bibsp">   </span></span><a
id="XGARUDA"></a>(2013, May). [Online]. Available:
<a
href="http://scilab-test.garudaindia.in/scilab_in/,
http://scilab-test.garudaindia.in/cloud" class="url" >http://scilab-test.garudaindia.in/scilab_in/,http://scilab-test.garudaindia.in/cloud</a>
</p>
<p class="bibitem" ><span class="biblabel">
[5]<span class="bibsp">   </span></span><a
id="XT10KT"></a>D. B. Phatak. (2013, May) Teach 10,000 teacher programme. [Online].
Available: <a
href="http://www.it.iitb.ac.in/nmeict/MegaWorkshop.do" class="url" >http://www.it.iitb.ac.in/nmeict/MegaWorkshop.do</a>
</p>
<p class="bibitem" ><span class="biblabel">
[6]<span class="bibsp">   </span></span><a
id="XT10KT-kal"></a>K. Kannan and K. Narayanan, “Ict-enabled scalable workshops for engineering
college teachers in india,” in <span
class="cmti-10x-x-109">Post-Secondary Education and Technology: A Global</span>
<span
class="cmti-10x-x-109">Perspective on Opportunities and Obstacles to Development (International and</span>
<span
class="cmti-10x-x-109">Development Education)</span>, R. Clohey, S. Austin-Li, and J. C. Weldman, Eds.
Palgrave Macmillan, 2012.
</p>
<p class="bibitem" ><span class="biblabel">
[7]<span class="bibsp">   </span></span><a
id="XT10KT-kgp"></a>(2013, May) Teach 10,000 teacher programme on analog electronics. [Online].
Available: <a
href="http://www.nmeict.iitkgp.ernet.in/Analogmain.htm" class="url" >http://www.nmeict.iitkgp.ernet.in/Analogmain.htm</a>
</p>
<p class="bibitem" ><span class="biblabel">
[8]<span class="bibsp">   </span></span><a
id="Xaakash"></a>(2013, May). [Online]. Available: <a
href="http://www.aakashlabs.org/" class="url" >http://www.aakashlabs.org/</a>
</p>
<p class="bibitem" ><span class="biblabel">
[9]<span class="bibsp">   </span></span><a
id="Xeda"></a>(2013, May). [Online]. Available:
<a
href="http://en.wikipedia.org/wiki/Electronic_design_automation" class="url" >http://en.wikipedia.org/wiki/Electronic_design_automation</a>
</p>
<p class="bibitem" ><span class="biblabel">
[10]<span class="bibsp">   </span></span><a
id="Xsynaptic"></a>(2013, May) Synaptic Package Manager Spoken Tutorial. [Online]. Available:
<a
href="http://www.spoken-tutorial.org/list_videos?view=1&foss=Linux&language=English" class="url" >http://www.spoken-tutorial.org/list_videos?view=1&foss=Linux&language=English</a>
</p>
<p class="bibitem" ><span class="biblabel">
[11]<span class="bibsp">   </span></span><a
id="Xeeschema"></a>(2013, May). [Online]. Available:
<a
href="http://www.kicad-pcb.org/display/KICAD/KiCad+EDA+Software+Suite" class="url" >http://www.kicad-pcb.org/display/KICAD/KiCad+EDA+Software+Suite</a>
</p>
<p class="bibitem" ><span class="biblabel">
[12]<span class="bibsp">   </span></span><a
id="Xngspice-web"></a>(2013, May). [Online]. Available: <a
href="http://ngspice.sourceforge.net/" class="url" >http://ngspice.sourceforge.net/</a>
</p>
<p class="bibitem" ><span class="biblabel">
[13]<span class="bibsp">   </span></span><a
id="Xscilab-in"></a>(2013, May). [Online]. Available: <a
href="http://scilab.in/" class="url" >http://scilab.in/</a>
</p>
<p class="bibitem" ><span class="biblabel">
[14]<span class="bibsp">   </span></span><a
id="Xspice"></a>S. M. Sandler and C. Hymowitz, <span
class="cmti-10x-x-109">SPICE Circuit Handbook</span>. New York:
McGraw-Hill Professional, 2006.
</p>
<p class="bibitem" ><span class="biblabel">
[15]<span class="bibsp">   </span></span><a
id="Xkicad"></a>J.-P. Charras and F. Tappero. (2013, May). [Online]. Available:
<a
href="http://www.kicad-pcb.org/display/KICAD/KiCad+Documentation" class="url" >http://www.kicad-pcb.org/display/KICAD/KiCad+Documentation</a>
</p>
<p class="bibitem" ><span class="biblabel">
[16]<span class="bibsp">   </span></span><a
id="Xkicad2"></a>D. Jahshan and P. Hutchinson. (2013, May). [Online]. Available:
<a
href="http://bazaar.launchpad.net/~kicad-developers/kicad/doc/files/head:/doc/tutorials/" class="url" >http://bazaar.launchpad.net/<span
class="cmsy-8">∼</span>kicad-developers/kicad/doc/files/head:/doc/tutorials/</a>
</p>
<p class="bibitem" ><span class="biblabel">
[17]<span class="bibsp">   </span></span><a
id="Xngspice"></a>P. Nenzi and H. Vogt. (2013) Ngspice users manual version 25plus. [Online].
Available: <a
href="http://ngspice.sourceforge.net/docs/ngspice-manual.pdf" class="url" >http://ngspice.sourceforge.net/docs/ngspice-manual.pdf</a>
</p>
<p class="bibitem" ><span class="biblabel">
[18]<span class="bibsp">   </span></span><a
id="Xkmm11-TUGboat"></a>K. M. Moudgalya, “<span class="LATEX">L<span class="A">A</span><span class="TEX">T<span
class="E">E</span>X</span></span> Training through Spoken Tutorials,” <span
class="cmti-10x-x-109">TUGboat</span>,
vol. 32, no. 3, pp. 251–257, 2011.
</p>
<p class="bibitem" ><span class="biblabel">
[19]<span class="bibsp">   </span></span><a
id="Xst"></a>(2013, May). [Online]. Available: <a
href="http://www.spoken-tutorial.org/" class="url" >http://www.spoken-tutorial.org/</a>
</p>
<p class="bibitem" ><span class="biblabel">
[20]<span class="bibsp">   </span></span><a
id="Xoscad"></a>(2013, May). [Online]. Available: <a
href="http://oscad.in/" class="url" >http://oscad.in/</a>
</p>
</div>
</body></html>
|