summaryrefslogtreecommitdiff
path: root/Windows/spice/examples/Monte_Carlo/MC_ring.sp
blob: 58e5c141f5abcb6aa1e22cfcc0d22acabae56170 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
Perform Monte Carlo simulation in ngspice
* 25 stage Ring-Osc. BSIM3

vin in out dc 0.5 pulse 0.5 0 0.1n 5n 1 1 1
vdd dd 0 dc 3.3
vss ss 0 dc 0
ve  sub  0 dc 0
vpe well 0 dc 3.3

.subckt inv1 dd ss sub well in out
mn1  out in  ss  sub  n1  w=2u l=0.35u as=3p ad=3p ps=4u pd=4u
mp1  out in  dd  well p1  w=4u l=0.35u as=7p ad=7p ps=6u pd=6u
.ends inv1

.subckt inv5 dd ss sub well in out
xinv1 dd ss sub well in 1 inv1
xinv2 dd ss sub well 1  2 inv1
xinv3 dd ss sub well 2  3 inv1
xinv4 dd ss sub well 3  4 inv1
xinv5 dd ss sub well 4 out inv1
.ends inv5

xinv1 dd ss sub well in out5 inv5
xinv2 dd ss sub well out5 out10 inv5
xinv3 dd ss sub well out10 out15 inv5
xinv4 dd ss sub well out15 out20 inv5
xinv5 dd ss sub well out20 out inv5
xinv11 dd 0 sub well out buf inv1
cout  buf ss 0.2pF
*
.options noacct
.control
  save buf                        $ we just need buf, save memory by more than 10x
  let mc_runs = 10             $ number of runs for monte carlo
  let run = 0                     $ number of actual run
  set curplot = new               $ create a new plot
  set curplottitle = "Transient outputs"
  set plot_out = $curplot         $ store its name to 'plot_out'
  set curplot = new               $ create a new plot
  set curplottitle = "FFT outputs"
  set plot_fft = $curplot         $ store its name to 'plot_fft'
  set curplot = new               $ create a new plot
  set curplottitle = "Oscillation frequency"
  set max_fft = $curplot          $ store its name to 'max_fft'
  let mc_runsp = mc_runs + 1
  let maxffts = unitvec(mc_runsp) $ vector for storing max measure results
  let halfffts = unitvec(mc_runsp)$ vector for storing measure results at -40dB rising
*
* define distributions for random numbers:
* unif: uniform distribution, deviation relativ to nominal value
* aunif: uniform distribution, deviation absolut
* gauss: Gaussian distribution, deviation relativ to nominal value
* agauss: Gaussian distribution, deviation absolut
  define unif(nom, var) (nom + (nom*var) * sunif(0))
  define aunif(nom, avar) (nom + avar * sunif(0))
  define gauss(nom, var, sig) (nom + (nom*var)/sig * sgauss(0))
  define agauss(nom, avar, sig) (nom + avar/sig * sgauss(0))
*
* We want to vary the model parameters vth0, u0, tox, lint, and wint
* of the BSIM3 model for the NMOS and PMOS transistors.
* We may obtain the nominal values (nom) by manually extracting them from
* the parameter set. Here we get them automatically and store them into
* variables. This has the advantage that you may change the parameter set 
* without having to look up the values again.
  set n1vth0=@n1[vth0]
  set n1u0=@n1[u0]
  set n1tox=@n1[tox]
  set n1lint=@n1[lint]
  set n1wint=@n1[wint]
  set p1vth0=@p1[vth0]
  set p1u0=@p1[u0]
  set p1tox=@p1[tox]
  set p1lint=@p1[lint]
  set p1wint=@p1[wint]
*
* run the simulation loop
  dowhile run <= mc_runs
    * without the reset switch there is some strange drift
    * towards lower and lower frequencies
    reset
    * run=0 simulates with nominal parameters
    if run > 0
      altermod @n1[vth0]=gauss($n1vth0, 0.1, 3)
      altermod @n1[u0]=gauss($n1u0, 0.05, 3)
      altermod @n1[tox]=gauss($n1tox, 0.1, 3)
      altermod @n1[lint]=gauss($n1lint, 0.1, 3)
      altermod @n1[wint]=gauss($n1wint, 0.1, 3)	  
      altermod @p1[vth0]=gauss($p1vth0, 0.1, 3)
      altermod @p1[u0]=gauss($p1u0, 0.1, 3)
      altermod @p1[tox]=gauss($p1tox, 0.1, 3)
      altermod @p1[lint]=gauss($p1lint, 0.1, 3)
      altermod @p1[wint]=gauss($p1wint, 0.1, 3)
    end
    tran 15p 50n 0
* select stop and step so that number of data points after linearization is not too 
* close to 8192, which would yield varying number of line length and thus scale for fft.
*
* We have to figure out what to do if a single simulation will not converge.
* Is there a variable which may be set if there is no convergence?
* Then we might skip this run and continue with a new run. It does not exist for now.
* So we have to rely on the robustness of the following steps not leading
* to a seg fault if the tran data are missing.
*
    set run ="$&run"              $ create a variable from the vector
    set mc_runs ="$&mc_runs"      $ create a variable from the vector
    echo simulation run no. $run of $mc_runs
    * save the linearized data for having equal time scales for all runs
    linearize buf                 $ linearize only buf, no other vectors needed
    set dt = $curplot             $ store the current plot to dt (tran i+1)
    setplot $plot_out             $ make 'plt_out' the active plot
    * firstly save the time scale once to become the default scale
    if run=0
       let time={$dt}.time
    end
    let vout{$run}={$dt}.buf      $ store the output vector to plot 'plot_out'
    setplot $dt                   $ go back to the previous plot (tran i+1)
    fft buf $ run fft on vector buf
    let buf2=db(mag(buf))
    * find the frequency where buf has its maximum of the fft signal
    meas sp fft_max MAX_AT buf2 from=0.1G to=0.7G
    * find the frequency where buf is -40dB at rising fft signal
    meas sp fft_40 WHEN buf2=-40 RISE=1 from=0.1G to=0.7G	
    * store the fft vector
    set dt = $curplot             $ store the current plot to dt (spec i)
    setplot $plot_fft             $ make 'plot_fft' the active plot
    if run=0
       let frequency={$dt}.frequency
    end
    let fft{$run}={$dt}.buf       $ store the output vector to plot 'plot_fft'
    * store the measured value
    setplot $max_fft              $ make 'max_fft' the active plot
    let maxffts[{$run}]={$dt}.fft_max
	let halfffts[{$run}]={$dt}.fft_40
*   setplot $plot_out
* The following command does not work here. Why not? Probably not a real copy.
*    destroy $dt                   $ save memory, we don't need this plot (spec) any more
    setplot $dt                   $ go back to the previous plot
    let run = run + 1
  end
***** plotting **********************************************************
*  plot {$plot_out}.allv
  plot {$plot_out}.vout0          $ just plot the tran output with nominal parameters
*  setplot $plot_fft
*  plot db(mag(ally)) xlimit .1G 1G ylimit -80 10
  plot db(mag({$plot_fft}.ally)) xlimit .1G 1G ylimit -80 10
*
* create a histogram from vector maxffts
  setplot $max_fft                $ make 'max_fft' the active plot
  set startfreq=400MEG
  set bin_size=5MEG
  set bin_count=20
  compose xvec start=$startfreq step=$bin_size lin=$bin_count $ requires variables as parameters
  settype frequency xvec
  let bin_count=$bin_count        $ create a vector from the variable
  let yvec=unitvec(bin_count)     $ requires vector as parameter
  let startfreq=$startfreq
  let bin_size=$bin_size
  * put data into the correct bins
  let run = 0
  dowhile run < mc_runs
    set run = "$&run"             $ create a variable from the vector
    let val = maxffts[{$run}]
    let part = 0
    * Check if val fits into a bin. If yes, raise bin by 1
    dowhile part < bin_count
      if ((val < (startfreq + (part+1)*bin_size)) & (val > (startfreq + part*bin_size)))
        let yvec[part] = yvec[part] + 1
                break
      end
      let part = part + 1
    end
    let run = run + 1
  end
  * plot the histogram
  set plotstyle=combplot
  plot yvec-1 vs xvec             $ subtract 1 because with started with unitvec containing ones
* calculate jitter
  let diff40 = (vecmax(halfffts) - vecmin(halfffts))*1e-6
  echo
  echo Max. jitter is "$&diff40" MHz
  rusage
.endc
********************************************************************************
.model n1 nmos
+level=8
+version=3.3.0
+tnom=27.0
+nch=2.498e+17  tox=9e-09 xj=1.00000e-07
+lint=9.36e-8 wint=1.47e-7
+vth0=.6322    k1=.756  k2=-3.83e-2  k3=-2.612
+dvt0=2.812  dvt1=0.462  dvt2=-9.17e-2
+nlx=3.52291e-08  w0=1.163e-6
+k3b=2.233
+vsat=86301.58  ua=6.47e-9  ub=4.23e-18  uc=-4.706281e-11
+rdsw=650  u0=388.3203 wr=1
+a0=.3496967 ags=.1    b0=0.546    b1=1  
+dwg=-6.0e-09 dwb=-3.56e-09 prwb=-.213
+keta=-3.605872e-02  a1=2.778747e-02  a2=.9
+voff=-6.735529e-02  nfactor=1.139926  cit=1.622527e-04
+cdsc=-2.147181e-05  
+cdscb=0  dvt0w=0 dvt1w=0 dvt2w=0
+cdscd=0 prwg=0
+eta0=1.0281729e-02  etab=-5.042203e-03
+dsub=.31871233
+pclm=1.114846  pdiblc1=2.45357e-03  pdiblc2=6.406289e-03
+drout=.31871233  pscbe1=5000000  pscbe2=5e-09 pdiblcb=-.234
+pvag=0 delta=0.01
+wl=0 ww=-1.420242e-09 wwl=0
+wln=0 wwn=.2613948 ll=1.300902e-10
+lw=0 lwl=0 lln=.316394 lwn=0
+kt1=-.3  kt2=-.051
+at=22400
+ute=-1.48
+ua1=3.31e-10  ub1=2.61e-19 uc1=-3.42e-10
+kt1l=0 prt=764.3
+noimod=2
+af=1.075e+00              kf=9.670e-28               ef=1.056e+00
+noia=1.130e+20            noib=7.530e+04             noic=-8.950e-13
**** PMOS ***
.model p1 pmos
+level=8
+version=3.3.0
+tnom=27.0
+nch=3.533024e+17  tox=9e-09 xj=1.00000e-07
+lint=6.23e-8 wint=1.22e-7
+vth0=-.6732829 k1=.8362093  k2=-8.606622e-02  k3=1.82
+dvt0=1.903801  dvt1=.5333922  dvt2=-.1862677
+nlx=1.28e-8  w0=2.1e-6
+k3b=-0.24 prwg=-0.001 prwb=-0.323
+vsat=103503.2  ua=1.39995e-09  ub=1.e-19  uc=-2.73e-11
+rdsw=460  u0=138.7609
+a0=.4716551 ags=0.12
+keta=-1.871516e-03  a1=.3417965  a2=0.83
+voff=-.074182  nfactor=1.54389  cit=-1.015667e-03
+cdsc=8.937517e-04
+cdscb=1.45e-4  cdscd=1.04e-4
+dvt0w=0.232 dvt1w=4.5e6 dvt2w=-0.0023
+eta0=6.024776e-02  etab=-4.64593e-03
+dsub=.23222404
+pclm=.989  pdiblc1=2.07418e-02  pdiblc2=1.33813e-3
+drout=.3222404  pscbe1=118000  pscbe2=1e-09
+pvag=0
+kt1=-0.25  kt2=-0.032 prt=64.5
+at=33000
+ute=-1.5
+ua1=4.312e-9 ub1=6.65e-19  uc1=0
+kt1l=0
+noimod=2
+af=9.970e-01              kf=2.080e-29               ef=1.015e+00
+noia=1.480e+18            noib=3.320e+03             noic=1.770e-13
.end