* pll circuit using xspice code models * output frequency 400 MHz * locked to a 1 or 10 MHz reference .param vcc=3.3 .param divisor=40 .param fref=10e6 .csparam simtime=25u .global d_d0 d_d1 vdd dd 0 dc 'vcc' *vco cont 0 dc 1.9 *PULSE(V1 V2 TD TR TF PW PER) * reference frequency selected by param fref * PULSE(V1 V2 TD TR TF PW PER) vref ref 0 dc 0 pulse(0 'vcc' 10n 1n 1n '1/fref/2' '1/fref') abridgeref [ref] [d_ref] adc_vbuf .model adc_vbuf adc_bridge(in_low = 0.5 in_high = 0.5) *digital zero vzero z 0 dc 0 abridgev3 [z] [d_d0] adc_vbuf .model adc_vbuf adc_bridge(in_low = 'vcc*0.5' in_high = 'vcc*0.5') *digital one ainv1 d_d0 d_d1 invd1 .model invd1 d_inverter(rise_delay = 1e-10 fall_delay = 1e-10) * vco * buf: analog out * d_digout: digital out * cont: analog control voltage * dd: analog supply voltage *.include vco_sub.cir *xvco buf d_digout cont dd ro_vco .include vco_sub_new.cir xvco buf d_digout cont dd d_osc_vco * digital divider adiv1 d_digout d_divout divider .model divider d_fdiv(div_factor = 'divisor' high_cycles = 'divisor/2' + i_count = 4 rise_delay = 1e-10 + fall_delay = 1e-10) * frequency phase detector .include f-p-det-d-sub.cir Xfpdet d_divout d_ref d_U d_Un d_D d_Dn f-p-det * loop filters *2nd or 3rd order, transistors as switches .include loop-filter-2.cir Xlf d_Un d_D cont loopf * 2nd order, Exxxx voltage controlled current sources as 'switches' * loop filter current sources as charge pump *.include loop-filter.cir *Xlf d_U d_D cont loopfe * d to a for plotting abridge-w1 [d_divout d_ref d_Un d_D] [s1 s2 u1n d1] dac1 ; change to d_u or d_Un .model dac1 dac_bridge(out_low = 0 out_high = 1 out_undef = 0.5 + input_load = 5.0e-12 t_rise = 1e-10 + t_fall = 1e-10) .control save cont s1 s2 u1n d1 v.xlf.vdd#branch; to save memory iplot cont tran 0.1n $&simtime uic rusage plot cont s1 s2+1.2 u1n+2.4 d1+3.6 xlimit 4u 5u plot v.xlf.vdd#branch xlimit 4u 5u ylimit -8m 2m *plot cont .endc *model = bsim3v3 *Berkeley Spice Compatibility * Lmin= .35 Lmax= 20 Wmin= .6 Wmax= 20 .model N1 NMOS *+version = 3.2.4 +version = 3.3.0 +Level= 8 +Tnom=27.0 +Nch= 2.498E+17 Tox=9E-09 Xj=1.00000E-07 +Lint=9.36e-8 Wint=1.47e-7 +Vth0= .6322 K1= .756 K2= -3.83e-2 K3= -2.612 +Dvt0= 2.812 Dvt1= 0.462 Dvt2=-9.17e-2 +Nlx= 3.52291E-08 W0= 1.163e-6 +K3b= 2.233 +Vsat= 86301.58 Ua= 6.47e-9 Ub= 4.23e-18 Uc=-4.706281E-11 +Rdsw= 650 U0= 388.3203 wr=1 +A0= .3496967 Ags=.1 B0=0.546 B1= 1 + Dwg = -6.0E-09 Dwb = -3.56E-09 Prwb = -.213 +Keta=-3.605872E-02 A1= 2.778747E-02 A2= .9 +Voff=-6.735529E-02 NFactor= 1.139926 Cit= 1.622527E-04 +Cdsc=-2.147181E-05 +Cdscb= 0 Dvt0w = 0 Dvt1w = 0 Dvt2w = 0 + Cdscd = 0 Prwg = 0 +Eta0= 1.0281729E-02 Etab=-5.042203E-03 +Dsub= .31871233 +Pclm= 1.114846 Pdiblc1= 2.45357E-03 Pdiblc2= 6.406289E-03 +Drout= .31871233 Pscbe1= 5000000 Pscbe2= 5E-09 Pdiblcb = -.234 +Pvag= 0 delta=0.01 + Wl = 0 Ww = -1.420242E-09 Wwl = 0 + Wln = 0 Wwn = .2613948 Ll = 1.300902E-10 + Lw = 0 Lwl = 0 Lln = .316394 + Lwn = 0 +kt1=-.3 kt2=-.051 +At= 22400 +Ute=-1.48 +Ua1= 3.31E-10 Ub1= 2.61E-19 Uc1= -3.42e-10 +Kt1l=0 Prt=764.3 .model P1 PMOS *+version = 3.2.4 +version = 3.3.0 +Level= 8 +Tnom=27.0 +Nch= 3.533024E+17 Tox=9E-09 Xj=1.00000E-07 +Lint=6.23e-8 Wint=1.22e-7 +Vth0=-.6732829 K1= .8362093 K2=-8.606622E-02 K3= 1.82 +Dvt0= 1.903801 Dvt1= .5333922 Dvt2=-.1862677 +Nlx= 1.28e-8 W0= 2.1e-6 +K3b= -0.24 Prwg=-0.001 Prwb=-0.323 +Vsat= 103503.2 Ua= 1.39995E-09 Ub= 1.e-19 Uc=-2.73e-11 + Rdsw= 460 U0= 138.7609 +A0= .4716551 Ags=0.12 +Keta=-1.871516E-03 A1= .3417965 A2= 0.83 +Voff=-.074182 NFactor= 1.54389 Cit=-1.015667E-03 +Cdsc= 8.937517E-04 +Cdscb= 1.45e-4 Cdscd=1.04e-4 + Dvt0w=0.232 Dvt1w=4.5e6 Dvt2w=-0.0023 +Eta0= 6.024776E-02 Etab=-4.64593E-03 +Dsub= .23222404 +Pclm= .989 Pdiblc1= 2.07418E-02 Pdiblc2= 1.33813E-3 +Drout= .3222404 Pscbe1= 118000 Pscbe2= 1E-09 +Pvag= 0 +kt1= -0.25 kt2= -0.032 prt=64.5 +At= 33000 +Ute= -1.5 +Ua1= 4.312e-9 Ub1= 6.65e-19 Uc1= 0 +Kt1l=0 .end