BJTdriver -- 2in st. lin -- 20in coupled line LTRA -- 2in st line -- DiodeCircuit * This unclassified circuit is from Raytheon, courtesy Gerry Marino. * * _______ * -------- 2in _________________ 2in | | * | BJT |______| |______|Diode| * | |------| |------| | * | Drvr | line | 2-wire | line |rcvr.| * -------- | coupled | |_____| * | transmission | * |-/\/\/\/\----| line |-------\/\/\/\/\----| * | 50ohms | | 50ohms | * | | | | * Ground ----------------- Ground * * * Each inch of the lossy line is modelled by 10 LRC lumps in the * Raytheon model. * The line parameters (derived from the Raytheon input file) are: * L = 9.13nH per inch * C = 3.65pF per inch * R = 0.2 ohms per inch * K = 0.482 [coupling coefficient; K = M/sqrt(L1*L2)] * Cc = 1.8pF per inch * * coupled ltra model generated using the standalone program * multi_decomp * the circuit v1 1 0 0v pulse(0 4 1ns 1ns 1ns 20ns 40ns) vcc 10 0 5v * series termination *x1 1 oof 10 bjtdrvr *rseries oof 2 50 x1 1 2 10 bjtdrvr rt1 3 0 50 * convolution model x2 2 3 4 5 conv2wetcmodel * rlc segments model *x2 2 3 4 5 rlc2wetcmodel x3 4 dioload rt2 5 0 50 .model qmodn npn(bf=100 rb=100 cje=0.09375pF cjc=0.28125pF is=1e-12 +pe=0.5 pc=0.5) .model qmodpd npn(bf=100 rb=100 cje=0.08187pF cjc=0.2525pF is=1e-12 +pe=0.5 pc=0.5) .model qmodpdmine npn(bf=100 rb=100 cje=0.08187pF cjc=0.05pF is=1e-12 +pe=0.5 pc=0.5) .model dmod1 d(n=2.25 is=1.6399e-4 bv=10) .model dmod2 d .model dmod d(vj=0.3v) .model diod1 d(tt=0.75ns vj=0.6 rs=909 bv=10) .model diod2 d(tt=0.5ns vj=0.3 rs=100 bv=10) .options acct reltol=1e-3 abstol=1e-12 .control tran 0.1ns 60ns plot v(2) v(4) v(5) .endc * bjt driver - 19=input, 268=output, 20=vcc; wierd node numbers from * the Raytheon file .subckt bjtdrvr 19 268 20 q1 22 18 13 qmodn q2 18 16 13 qmodn qd2 21 9 0 qmodn q4 14 14 0 qmodn q3 16 15 14 qmodpd q5 8 13 17 qmodn q6 25 12 0 qmodn q7 6 17 0 qmodpd qd1 26 10 0 qmodn q8 7 11 10 qmodn *q10 268 17 0 qmodpd q10 268 17 0 qmodpdmine q9 7 10 268 qmodn d1 0 19 dmod1 d2 18 19 dmod2 d3 13 19 dmod dq1 18 22 dmod dq2 16 18 dmod d502 9 21 dmod dq3 15 16 dmod d10 24 8 dmod d4 15 6 dmod dq6 12 25 dmod dq7 17 6 dmod dd1 17 10 dmod d7 11 6 dmod dd2 17 26 dmod d9 23 6 dmod dq8 11 7 dmod d501 17 268 dmod dq9 10 7 dmod d14 20 27 dmod d8 0 268 dmod r1 18 20 6k r2 22 20 2.2k r4 0 13 7k rd1 9 13 2k rd2 21 13 3k r3 16 20 10k r5 15 20 15k r9 0 17 4k r6 24 20 750 r10 12 17 2k r12 24 11 1.5k r11 25 17 3k r15 23 20 10k r13 0 10 15k r14 7 27 12 .ends bjtdrvr * subckt dioload - diode load: input=28, output=4, vcc=5 .subckt dioload 28 *comment out everything in dioload except d5 and r503, and watch * the difference in results obtained between a tran 0.1ns 20ns and * a tran 0.01ns 20ns vccint 5 0 5v c1 28 0 5pF r503 0 4 5.55 r4 0 28 120k r5 1 5 7.5k d5 4 28 diod2 d1 1 28 diod1 d4 2 0 diod1 d3 3 2 diod1 d2 1 3 diod1 .ends dioload * subckt rlclump - one RLC lump of the lossy line .subckt rlclump 1 2 *r1 1 3 0.02 *c1 3 0 0.365pF *l1 3 2 0.913nH l1 1 3 0.913nH c1 2 0 0.365pF r1 3 2 0.02 *r1 1 3 0.01 *c1 3 0 0.1825pF *l1 3 4 0.4565nH *r2 4 5 0.01 *c2 5 0 0.1825pF *l2 5 2 0.4565nH *c1 1 0 0.365pF *l1 1 2 0.913nH .ends lump .subckt rlconeinch 1 2 x1 1 3 rlclump x2 3 4 rlclump x3 4 5 rlclump x4 5 6 rlclump x5 6 7 rlclump x6 7 8 rlclump x7 8 9 rlclump x8 9 10 rlclump x9 10 11 rlclump x10 11 2 rlclump .ends rlconeinch .subckt rlctwoinch 1 2 x1 1 3 rlconeinch x2 3 2 rlconeinch .ends rlctwoinch .subckt rlcfourinch 1 2 x1 1 3 rlconeinch x2 3 4 rlconeinch x3 4 5 rlconeinch x4 5 2 rlconeinch .ends rlcfourinch .subckt rlcfiveinch 1 2 x1 1 3 rlconeinch x2 3 4 rlconeinch x3 4 5 rlconeinch x4 5 6 rlconeinch x5 6 2 rlconeinch .ends rlcfiveinch .subckt rlctwentyrlcfourinch 1 2 x1 1 3 rlcfiveinch x2 3 4 rlcfiveinch x3 4 5 rlcfiveinch x4 5 6 rlcfiveinch x5 6 2 rlcfourinch .ends rlctwentyrlcfourinch .subckt rlclumpstub A B C D x1 A int1 rlcfiveinch x2 int1 int2 rlcfiveinch x3 int2 1 rlcfiveinch x4 1 2 rlcfourinch x5 1 int3 rlcfiveinch x6 int3 B rlconeinch x7 2 C rlcfiveinch x8 2 D rlcfourinch .ends rlclumpstub .subckt ltrastub A B C D o1 A 0 1 0 lline15in o2 1 0 B 0 lline6in o3 1 0 2 0 lline4in o4 2 0 C 0 lline5in o5 2 0 D 0 lline4in .ends ltrastub *modelling using R and lossless lines *5 segments per inch .model llfifth ltra nocontrol rel=10 r=0 g=0 l=9.13e-9 +c=3.65e-12 len=0.2 steplimit quadinterp .subckt xlump 1 2 o1 1 0 3 0 llfifth r1 2 3 0.04 .ends xlump .subckt xoneinch 1 2 x1 1 3 xlump x2 3 4 xlump x3 4 5 xlump x4 5 6 xlump x5 6 2 xlump *x5 6 7 xlump *x6 7 8 xlump *x7 8 9 xlump *x8 9 10 xlump *x9 10 11 xlump *x10 11 2 xlump .ends xoneinch .subckt xFourinch 1 2 x1 1 3 xoneinch x2 3 4 xoneinch x3 4 5 xoneinch x4 5 2 xoneinch .ends xfourinch .subckt xfiveinch 1 2 x1 1 3 xoneinch x2 3 4 xoneinch x3 4 5 xoneinch x4 5 6 xoneinch x5 6 2 xoneinch .ends xfiveinch .subckt xlumpstub A B C D x1 A int1 xfiveinch x2 int1 int2 xfiveinch x3 int2 1 xfiveinch x4 1 2 xfourinch x5 1 int3 xfiveinch x6 int3 B xoneinch x7 2 C xfiveinch x8 2 D xfourinch .ends xlumpstub * modelling a 2 wire coupled system using RLC lumps * 10 segments per inch * * 1---xxxxx----2 * 3---xxxxx----4 .subckt rlc2wlump 1 3 2 4 l1 1 5 0.913nH c1 2 0 0.365pF r1 5 2 0.02 l2 3 6 0.913nH c2 4 0 0.365pF r2 6 4 0.02 cmut 2 4 0.18pF k12 l1 l2 0.482 .ends rlc2wlump .subckt rlc2woneinch 1 2 3 4 x1 1 2 5 6 rlc2wlump x2 5 6 7 8 rlc2wlump x3 7 8 9 10 rlc2wlump x4 9 10 11 12 rlc2wlump x5 11 12 13 14 rlc2wlump x6 13 14 15 16 rlc2wlump x7 15 16 17 18 rlc2wlump x8 17 18 19 20 rlc2wlump x9 19 20 21 22 rlc2wlump x10 21 22 3 4 rlc2wlump .ends rlc2woneinch .subckt rlc2wfiveinch 1 2 3 4 x1 1 2 5 6 rlc2woneinch x2 5 6 7 8 rlc2woneinch x3 7 8 9 10 rlc2woneinch x4 9 10 11 12 rlc2woneinch x5 11 12 3 4 rlc2woneinch .ends rlc2wfiveinch .subckt rlc2wtwentyinch 1 2 3 4 x1 1 2 5 6 rlc2wfiveinch x2 5 6 7 8 rlc2wfiveinch x3 7 8 9 10 rlc2wfiveinch x4 9 10 3 4 rlc2wfiveinch .ends rlc2wtwentyinch .subckt rlc2wetcmodel 1 2 3 4 x1 1 5 rlctwoinch x2 5 2 6 4 rlc2wtwentyinch x3 6 3 rlctwoinch .ends rlc2wetcmodel * Subcircuit conv2wtwentyinch * conv2wtwentyinch is a subcircuit that models a 2-conductor transmission line with * the following parameters: l=9.13e-09, c=3.65e-12, r=0.2, g=0, * inductive_coeff_of_coupling k=0.482, inter-line capacitance cm=1.8e-12, * length=20. Derived parameters are: lm=4.40066e-09, ctot=5.45e-12. * * It is important to note that the model is a simplified one - the * following assumptions are made: 1. The self-inductance l, the * self-capacitance ctot (note: not c), the series resistance r and the * parallel capacitance g are the same for all lines, and 2. Each line * is coupled only to the two lines adjacent to it, with the same * coupling parameters cm and lm. The first assumption imply that edge * effects have to be neglected. The utility of these assumptions is * that they make the sL+R and sC+G matrices symmetric, tridiagonal and * Toeplitz, with useful consequences. * * It may be noted that a symmetric two-conductor line will be * accurately represented by this model. * Lossy line models .model mod1_conv2wtwentyinch ltra rel=1.2 nocontrol r=0.2 l=4.72933999088e-09 g=0 c=7.25000000373e-12 len=20 .model mod2_conv2wtwentyinch ltra rel=1.2 nocontrol r=0.2 l=1.35306599818e-08 g=0 c=3.65000000746e-12 len=20 * subcircuit m_conv2wtwentyinch - modal transformation network for conv2wtwentyinch .subckt m_conv2wtwentyinch 1 2 3 4 v1 5 0 0v v2 6 0 0v f1 0 3 v1 0.707106779721 f2 0 3 v2 -0.707106782652 f3 0 4 v1 0.707106781919 f4 0 4 v2 0.707106780454 e1 7 5 3 0 0.707106780454 e2 1 7 4 0 0.707106782652 e3 8 6 3 0 -0.707106781919 e4 2 8 4 0 0.707106779721 .ends m_conv2wtwentyinch * Subckt conv2wtwentyinch .subckt conv2wtwentyinch 1 2 3 4 x1 1 2 5 6 m_conv2wtwentyinch o1 5 0 7 0 mod1_conv2wtwentyinch o2 6 0 8 0 mod2_conv2wtwentyinch x2 3 4 7 8 m_conv2wtwentyinch .ends conv2wtwentyinch .model convtwoinch ltra r=0.2 l=9.13e-9 c=3.65e-12 len=2.0 rel=1.2 nocontrol .subckt conv2wetcmodel 1 2 3 4 o1 1 0 5 0 convtwoinch x1 5 2 6 4 conv2wtwentyinch o2 6 0 3 0 convtwoinch .ends conv2wetcmodel .end