MOSdriver -- 24inch 2 lossy lines LTRA model -- C load m1 0 268 299 0 mn0p9 w = 18.0u l=1.0u m2 299 267 748 0 mn0p9 w = 18.0u l=1.0u m3 0 168 648 0 mn0p9 w = 18.0u l=0.9u m4 1 268 748 1 mp1p0 w = 36.0u l=1.0u m5 1 267 748 1 mp1p0 w = 36.0u l=1.0u m6 1 168 648 1 mp1p0 w = 36.0u l=1.0u * CN648 648 0 0.025398e-12 CN651 651 0 0.007398e-12 CN748 748 0 0.025398e-12 CN751 751 0 0.009398e-12 CN299 299 0 0.005398e-12 * * Subcircuit test * test is a subcircuit that models a 2-conductor transmission line with * the following parameters: l=9.13e-09, c=2.75e-13, r=0.2, g=0, * inductive_coeff_of_coupling k=0.36144, inter-line capacitance cm=9e-14, * length=24. Derived parameters are: lm=3.29995e-09, ctot=3.65e-13. * * It is important to note that the model is a simplified one - the * following assumptions are made: 1. The self-inductance l, the * self-capacitance ctot (note: not c), the series resistance r and the * parallel capacitance g are the same for all lines, and 2. Each line * is coupled only to the two lines adjacent to it, with the same * coupling parameters cm and lm. The first assumption implies that edge * effects have to be neglected. The utility of these assumptions is * that they make the sL+R and sC+G matrices symmetric, tridiagonal and * Toeplitz, with useful consequences (see "Efficient Transient * Simulation of Lossy Interconnect", by J.S. Roychowdhury and * D.O Pederson, Proc. DAC 91). * It may be noted that a symmetric two-conductor line is * represented accurately by this model. * Subckt node convention: * * |--------------------------| * 1-----| |-----n+1 * 2-----| |-----n+2 * : | n-wire multiconductor | : * : | line | : * n-1-----|(node 0=common gnd plane) |-----2n-1 * n-----| |-----2n * |--------------------------| * Lossy line models .model mod1_test ltra rel=1.2 nocontrol r=0.2 l=5.83005279316e-09 g=0 c=4.55000000187e-13 len=24 .model mod2_test ltra rel=1.2 nocontrol r=0.2 l=1.24299471863e-08 g=0 c=2.75000000373e-13 len=24 * subcircuit m_test - modal transformation network for test .subckt m_test 1 2 3 4 v1 5 0 0v v2 6 0 0v f1 0 3 v1 0.707106779721 f2 0 3 v2 -0.707106782652 f3 0 4 v1 0.707106781919 f4 0 4 v2 0.707106780454 e1 7 5 3 0 0.707106780454 e2 1 7 4 0 0.707106782652 e3 8 6 3 0 -0.707106781919 e4 2 8 4 0 0.707106779721 .ends m_test * Subckt test .subckt test 1 2 3 4 x1 1 2 5 6 m_test o1 5 0 7 0 mod1_test o2 6 0 8 0 mod2_test x2 3 4 7 8 m_test .ends test * x1 648 748 651 751 test * * vdd 1 0 DC 5.0 VK 267 0 DC 5.0 * VS1 168 0 PULSE (0 5 15.9N 0.2N 0.2N 15.8N 60N) VS2 268 0 PULSE (0 5 15.9N 0.2N 0.2N 15.8N 60N) * .control TRAN 0.2N 47.9NS PLOT v(648) v(651) v(751) .endc * .model mn0p9 nmos LEVEL=1 vto=0.8V kp=48u gamma=0.3 phi=0.55 lambda=0.0 + PHI=0.55 LAMBDA=0.00 CGSO=0 CGDO=0 CGBO=0 + CJ=0 CJSW=0 TOX=18000N NSUB=1E16 LD=0.0U .model mp1p0 pmos LEVEL=1 vto=-0.8V kp=21u gamma=0.45 phi=0.61 lambda=0.0 + PHI=0.61 LAMBDA=0.00 CGSO=0 CGDO=0 CGBO=0 + CJ=0 CJSW=0 TOX=18000N NSUB=3E16 LD=0.0U .END