Perform Monte Carlo simulation in ngspice * 25 stage Ring-Osc. BSIM3 with statistical variation of various model parameters * cd into ngspice/examples/Monte_Carlo * start in interactive mode 'ngspice MC_ring.sp' with several plots for output * or start in batch mode, controlled by .control section (Control mode) * with 'ngspice -b -r MC_ring.raw -o MC_ring.log MC_ring.sp'. vin in out dc 0.5 pulse 0.5 0 0.1n 5n 1 1 1 vdd dd 0 dc 3.3 vss ss 0 dc 0 ve sub 0 dc 0 vpe well 0 dc 3.3 .subckt inv1 dd ss sub well in out mn1 out in ss sub n1 w=2u l=0.35u as=3p ad=3p ps=4u pd=4u mp1 out in dd well p1 w=4u l=0.35u as=7p ad=7p ps=6u pd=6u .ends inv1 .subckt inv5 dd ss sub well in out xinv1 dd ss sub well in 1 inv1 xinv2 dd ss sub well 1 2 inv1 xinv3 dd ss sub well 2 3 inv1 xinv4 dd ss sub well 3 4 inv1 xinv5 dd ss sub well 4 out inv1 .ends inv5 xinv1 dd ss sub well in out5 inv5 xinv2 dd ss sub well out5 out10 inv5 xinv3 dd ss sub well out10 out15 inv5 xinv4 dd ss sub well out15 out20 inv5 xinv5 dd ss sub well out20 out inv5 xinv11 dd 0 sub well out buf inv1 cout buf ss 0.2pF * .options noacct .control save buf $ we just need buf, save memory by more than 10x let mc_runs = 30 $ number of runs for monte carlo let run = 0 $ number of actual run set curplot = new $ create a new plot set curplottitle = "Transient outputs" set plot_out = $curplot $ store its name to 'plot_out' set curplot = new $ create a new plot set curplottitle = "FFT outputs" set plot_fft = $curplot $ store its name to 'plot_fft' set curplot = new $ create a new plot set curplottitle = "Oscillation frequency" set max_fft = $curplot $ store its name to 'max_fft' let mc_runsp = mc_runs + 1 let maxffts = unitvec(mc_runsp) $ vector for storing max measure results let halfffts = unitvec(mc_runsp)$ vector for storing measure results at -40dB rising * * define distributions for random numbers: * unif: uniform distribution, deviation relativ to nominal value * aunif: uniform distribution, deviation absolut * gauss: Gaussian distribution, deviation relativ to nominal value * agauss: Gaussian distribution, deviation absolut define unif(nom, var) (nom + (nom*var) * sunif(0)) define aunif(nom, avar) (nom + avar * sunif(0)) define gauss(nom, var, sig) (nom + (nom*var)/sig * sgauss(0)) define agauss(nom, avar, sig) (nom + avar/sig * sgauss(0)) * * We want to vary the model parameters vth0, u0, tox, lint, and wint * of the BSIM3 model for the NMOS and PMOS transistors. * We may obtain the nominal values (nom) by manually extracting them from * the parameter set. Here we get them automatically and store them into * vectors. This has the advantage that you may change the parameter set * without having to look up the values again. let n1vth0=@n1[vth0] let n1u0=@n1[u0] let n1tox=@n1[tox] let n1lint=@n1[lint] let n1wint=@n1[wint] let p1vth0=@p1[vth0] let p1u0=@p1[u0] let p1tox=@p1[tox] let p1lint=@p1[lint] let p1wint=@p1[wint] * * run the simulation loop dowhile run <= mc_runs * run=0 simulates with nominal parameters if run > 0 setplot $max_fft altermod @n1[vth0] = gauss(n1vth0, 0.1, 3) altermod @n1[u0] = gauss(n1u0, 0.05, 3) altermod @n1[tox] = gauss(n1tox, 0.1, 3) altermod @n1[lint] = gauss(n1lint, 0.1, 3) altermod @n1[wint] = gauss(n1wint, 0.1, 3) altermod @p1[vth0] = gauss(p1vth0, 0.1, 3) altermod @p1[u0] = gauss(p1u0, 0.1, 3) altermod @p1[tox] = gauss(p1tox, 0.1, 3 ) altermod @p1[lint] = gauss(p1lint, 0.1, 3) altermod @p1[wint] = gauss(p1wint, 0.1, 3) end tran 15p 100n 0 * select stop and step so that number of data points after linearization is not too * close to 8192, which would yield varying number of line length and thus scale for fft. * * We have to figure out what to do if a single simulation will not converge. * There is the variable 'sim_status' which is set to 1 if the simulation * fails with ’xx simulation(s) aborted’, e.g. because of non-convergence. * Then we might skip this run and continue with a new run. * echo Simulation status $sim_status let simstat = $sim_status if simstat = 1 if run = mc_runs echo go to end else echo go to next run end destroy $curplot goto next end set run ="$&run" $ create a variable from the vector set mc_runs ="$&mc_runs" $ create a variable from the vector echo simulation run no. $run of $mc_runs set dt = $curplot * save the linearized data for having equal time scales for all runs linearize buf $ linearize only buf, no other vectors needed destroy $dt $ delete the tran i plot set dt = $curplot $ store the current plot to dt (tran i+1) setplot $plot_out $ make 'plt_out' the active plot * firstly save the time scale once to become the default scale if run=0 let time={$dt}.time end let vout{$run}={$dt}.buf $ store the output vector to plot 'plot_out' setplot $dt $ go back to the previous plot (tran i+1) fft buf $ run fft on vector buf destroy $dt $ delete the tran i+1 plot let buf2=db(mag(buf)) * find the frequency where buf has its maximum of the fft signal meas sp fft_max MAX_AT buf2 from=0.1G to=0.7G * find the frequency where buf is -40dB at rising fft signal meas sp fft_40 WHEN buf2=-40 RISE=1 from=0.1G to=0.7G echo echo * store the fft vector set dt = $curplot $ store the current plot to dt (spec i) setplot $plot_fft $ make 'plot_fft' the active plot if run=0 let frequency={$dt}.frequency end let fft{$run}={$dt}.buf $ store the output vector to plot 'plot_fft' * store the measured value setplot $max_fft $ make 'max_fft' the active plot let maxffts[{$run}]={$dt}.fft_max let halfffts[{$run}]={$dt}.fft_40 let run = run + 1 label next reset end ***** plotting ********************************************************** if $?batchmode echo echo Plotting not available in batch mode echo Write linearized vout0 to vout{$mc_runs} to rawfile $rawfile echo write $rawfile {$plot_out}.allv rusage quit else setplot $plot_out plot vout0 ylabel 'RO output, original parameters' $ just plot the tran output with nominal parameters setplot $plot_fft settype decibel ally plot db(mag(ally)) xlimit .1G 1G ylimit -80 10 ylabel 'fft output' * * create a histogram from vector maxffts setplot $max_fft $ make 'max_fft' the active plot set startfreq=400MEG set bin_size=5MEG set bin_count=20 compose xvec start=$startfreq step=$bin_size lin=$bin_count $ requires variables as parameters settype frequency xvec let bin_count=$bin_count $ create a vector from the variable let yvec=unitvec(bin_count) $ requires vector as parameter let startfreq=$startfreq let bin_size=$bin_size * put data into the correct bins let run = 0 dowhile run < mc_runs set run = $&run $ create a variable from the vector let val = maxffts[{$run}] let part = 0 * Check if val fits into a bin. If yes, raise bin by 1 dowhile part < bin_count if ((val < (startfreq + (part+1)*bin_size)) & (val > (startfreq + part*bin_size))) let yvec[part] = yvec[part] + 1 break end let part = part + 1 end let run = run + 1 end * plot the histogram set plotstyle=combplot plot yvec-1 vs xvec xlabel 'oscillation frequency' ylabel 'bin count' $ subtract 1 because we started with unitvec containing ones * plot simulation series set plotstyle=linplot let xx = vector(mc_runsp) settype frequency maxffts plot maxffts vs xx xlabel 'iteration no.' ylabel 'RO frequency' * calculate jitter let diff40 = (vecmax(halfffts) - vecmin(halfffts))*1e-6 echo echo Max. jitter is "$&diff40" MHz end rusage .endc ******************************************************************************** .model n1 nmos +level=8 +version=3.3.0 +tnom=27.0 +nch=2.498e+17 tox=9e-09 xj=1.00000e-07 +lint=9.36e-8 wint=1.47e-7 +vth0=.6322 k1=.756 k2=-3.83e-2 k3=-2.612 +dvt0=2.812 dvt1=0.462 dvt2=-9.17e-2 +nlx=3.52291e-08 w0=1.163e-6 +k3b=2.233 +vsat=86301.58 ua=6.47e-9 ub=4.23e-18 uc=-4.706281e-11 +rdsw=650 u0=388.3203 wr=1 +a0=.3496967 ags=.1 b0=0.546 b1=1 +dwg=-6.0e-09 dwb=-3.56e-09 prwb=-.213 +keta=-3.605872e-02 a1=2.778747e-02 a2=.9 +voff=-6.735529e-02 nfactor=1.139926 cit=1.622527e-04 +cdsc=-2.147181e-05 +cdscb=0 dvt0w=0 dvt1w=0 dvt2w=0 +cdscd=0 prwg=0 +eta0=1.0281729e-02 etab=-5.042203e-03 +dsub=.31871233 +pclm=1.114846 pdiblc1=2.45357e-03 pdiblc2=6.406289e-03 +drout=.31871233 pscbe1=5000000 pscbe2=5e-09 pdiblcb=-.234 +pvag=0 delta=0.01 +wl=0 ww=-1.420242e-09 wwl=0 +wln=0 wwn=.2613948 ll=1.300902e-10 +lw=0 lwl=0 lln=.316394 lwn=0 +kt1=-.3 kt2=-.051 +at=22400 +ute=-1.48 +ua1=3.31e-10 ub1=2.61e-19 uc1=-3.42e-10 +kt1l=0 prt=764.3 +noimod=2 +af=1.075e+00 kf=9.670e-28 ef=1.056e+00 +noia=1.130e+20 noib=7.530e+04 noic=-8.950e-13 **** PMOS *** .model p1 pmos +level=8 +version=3.3.0 +tnom=27.0 +nch=3.533024e+17 tox=9e-09 xj=1.00000e-07 +lint=6.23e-8 wint=1.22e-7 +vth0=-.6732829 k1=.8362093 k2=-8.606622e-02 k3=1.82 +dvt0=1.903801 dvt1=.5333922 dvt2=-.1862677 +nlx=1.28e-8 w0=2.1e-6 +k3b=-0.24 prwg=-0.001 prwb=-0.323 +vsat=103503.2 ua=1.39995e-09 ub=1.e-19 uc=-2.73e-11 +rdsw=460 u0=138.7609 +a0=.4716551 ags=0.12 +keta=-1.871516e-03 a1=.3417965 a2=0.83 +voff=-.074182 nfactor=1.54389 cit=-1.015667e-03 +cdsc=8.937517e-04 +cdscb=1.45e-4 cdscd=1.04e-4 +dvt0w=0.232 dvt1w=4.5e6 dvt2w=-0.0023 +eta0=6.024776e-02 etab=-4.64593e-03 +dsub=.23222404 +pclm=.989 pdiblc1=2.07418e-02 pdiblc2=1.33813e-3 +drout=.3222404 pscbe1=118000 pscbe2=1e-09 +pvag=0 +kt1=-0.25 kt2=-0.032 prt=64.5 +at=33000 +ute=-1.5 +ua1=4.312e-9 ub1=6.65e-19 uc1=0 +kt1l=0 +noimod=2 +af=9.970e-01 kf=2.080e-29 ef=1.015e+00 +noia=1.480e+18 noib=3.320e+03 noic=1.770e-13 .end