summaryrefslogtreecommitdiff
path: root/Windows/spice/examples/xspice/d_lut/mult4bit.spi
diff options
context:
space:
mode:
Diffstat (limited to 'Windows/spice/examples/xspice/d_lut/mult4bit.spi')
-rw-r--r--Windows/spice/examples/xspice/d_lut/mult4bit.spi127
1 files changed, 0 insertions, 127 deletions
diff --git a/Windows/spice/examples/xspice/d_lut/mult4bit.spi b/Windows/spice/examples/xspice/d_lut/mult4bit.spi
deleted file mode 100644
index acad1cec..00000000
--- a/Windows/spice/examples/xspice/d_lut/mult4bit.spi
+++ /dev/null
@@ -1,127 +0,0 @@
-* mult4bit.spi ---
-*
-* Example use of d_lut and d_genlut xspice models
-*
-* 4 bit parallel multiplier using the d_genlut xspice cell to represent
-* full and half adders, and using the d_lut xspice cell to represent the
-* AND gates.
-*
-* The LUTs are represented by a string indicating the output for each
-* combination of inputs. So a 2-input AND gate is represented by
-* "0001". The d_genlut model allows multiple outputs, and the string
-* result is the same as a d_lut with the strings for each output
-* concatenated. So the sum output of a full adder is "01101001"
-* (A ^ B ^ C), and the carry output is "00010111" (AB + BC + AC), so the
-* string representation of the d_genlut output is "0110100100010111".
-*
-* subcircuit inputs are aa[3:0] and ab[3:0], output is ap[7:0]
-* testbench inputs are a[3:0] and b[3:0], output is p[7:0]
-*---------------------------------------------------------------------------
-
-.subckt mult4bit ap7 ap6 ap5 ap4 ap3 ap2 ap1 ap0 aa3 aa2 aa1 aa0 ab3 ab2 ab1 ab0
-
-* A-to-D and D-to-A bridges
-.MODEL todig_3v adc_bridge(in_high=0.7 in_low=0.3 rise_delay=100n fall_delay=100n)
-.MODEL toana_3v dac_bridge(out_high=1.0 out_low=0.0)
-
-AA2D00 [ab3 ab2 ab1 ab0 aa3 aa2 aa1 aa0] [db3 db2 db1 db0 da3 da2 da1 da0] todig_3v
-AD2A00 [dp7 dp6 dp5 dp4 dp3 dp2 dp1 dp0] [ap7 ap6 ap5 ap4 ap3 ap2 ap1 ap0] toana_3v
-
-* Instantiate the 4-bit multiplier
-* LUT model representing a 2-input AND gate
-.model d_lut_and2 d_lut (rise_delay=50n fall_delay=50n input_load=1.0p
-+ table_values "0001")
-
-* genLUT model representing a half adder
-.model d_genlut_ha d_genlut (rise_delay=[50n 50n] fall_delay=[50n 50n]
-+ input_load=[1.0p 1.0p] input_delay=[2n 2n] table_values "01100001")
-
-* genLUT model representing a full adder
-.model d_genlut_fa d_genlut (rise_delay=[50n 50n] fall_delay=[50n 50n]
-+ input_load=[1.0p 1.0p 1.0p] input_delay=[2n 2n 2n] table_values "0110100100010111")
-
-* Instantiate the 4-bit multiplier
-AAND00 [da0 db0] dp0 d_lut_and2
-AAND10 [da1 db0] h0a d_lut_and2
-AAND11 [da0 db1] h0b d_lut_and2
-AAND20 [da2 db0] f0a d_lut_and2
-AAND21 [da1 db1] f0b d_lut_and2
-AAND22 [da0 db2] h1b d_lut_and2
-AAND30 [da3 db0] f1a d_lut_and2
-AAND31 [da2 db1] f1b d_lut_and2
-AAND32 [da1 db2] f2b d_lut_and2
-AAND33 [da0 db3] h2b d_lut_and2
-AAND40 [da3 db1] h3b d_lut_and2
-AAND41 [da2 db2] f3b d_lut_and2
-AAND42 [da1 db3] f4b d_lut_and2
-AAND50 [da3 db2] f5b d_lut_and2
-AAND51 [da2 db3] f6b d_lut_and2
-AAND60 [da3 db3] f7b d_lut_and2
-
-AHA0 [h0a h0b] [dp1 f0c] d_genlut_ha
-AHA1 [h1a h1b] [dp2 f2c] d_genlut_ha
-AHA2 [h2a h2b] [dp3 f4c] d_genlut_ha
-AHA3 [h3a h3b] [f3a f5a] d_genlut_ha
-
-AFA0 [f0a f0b f0c] [h1a f1c] d_genlut_fa
-AFA1 [f1a f1b f1c] [f2a h3a] d_genlut_fa
-AFA2 [f2a f2b f2c] [h2a f3c] d_genlut_fa
-AFA3 [f3a f3b f3c] [f4a f5c] d_genlut_fa
-AFA4 [f4a f4b f4c] [dp4 f6c] d_genlut_fa
-AFA5 [f5a f5b f5c] [f6a f7a] d_genlut_fa
-AFA6 [f6a f6b f6c] [dp5 f7c] d_genlut_fa
-AFA7 [f7a f7b f7c] [dp6 dp7] d_genlut_fa
-
-.ends
-
-* Testbench to exercise the multiplier
-
-* Eight pulsed voltage sources to run through the bits of a and b
-VV7 b3 0 DC=0 PULSE(0 1 6400u 100n 100n 6400u 12800u)
-VV6 b2 0 DC=0 PULSE(0 1 3200u 100n 100n 3200u 6400u)
-VV5 b1 0 DC=0 PULSE(0 1 1600u 100n 100n 1600u 3200u)
-VV4 b0 0 DC=0 PULSE(0 1 800u 100n 100n 800u 1600u)
-VV3 a3 0 DC=0 PULSE(0 1 400u 100n 100n 400u 800u)
-VV2 a2 0 DC=0 PULSE(0 1 200u 100n 100n 200u 400u)
-VV1 a1 0 DC=0 PULSE(0 1 100u 100n 100n 100u 200u)
-VV0 a0 0 DC=0 PULSE(0 1 50u 100n 100n 50u 100u)
-
-* Give a capacitive load to the outputs
-C7 p7 0 10f
-C6 p6 0 10f
-C5 p5 0 10f
-C4 p4 0 10f
-C3 p3 0 10f
-C2 p2 0 10f
-C1 p1 0 10f
-C0 p0 0 10f
-
-Xmult4 p7 p6 p5 p4 p3 p2 p1 p0 a3 a2 a1 a0 b3 b2 b1 b0 mult4bit
-
-* Run the transient simulation
-
-.control
-
-tran 50us 12825us 25us
-linearize
-
-let aa = (((v(a3))*2 + v(a2))*2 + v(a1))*2 + v(a0)
-let bb = (((v(b3))*2 + v(b2))*2 + v(b1))*2 + v(b0)
-
-let pp = (((((((v(p7))*2 + v(p6))*2 + v(p5))*2 + v(p4))*2 + v(p3))*2 + v(p2))*2 + v(p1))*2 + v(p0)
-
-let pp_gold = aa * bb
-
-plot aa bb pp
-
-let err = vecmax(abs(pp - pp_gold))
-
-if $&err > 1e-6
- echo "ERROR: multiplier output does not match golden response"
-else
- echo "INFO: multiplier output does match golden response"
-end
-
-.endc
-
-.end