diff options
author | rahulp13 | 2020-03-03 05:31:58 +0530 |
---|---|---|
committer | rahulp13 | 2020-03-03 05:31:58 +0530 |
commit | dfc268e0863c913a1b8726cd54eea3b40caf7c67 (patch) | |
tree | 1cd82634684da5ae86b558d44756189e080545d4 /Windows/spice/examples/xspice/d_lut/mult4bit.spi | |
parent | fd62c52150c7d1f81da8060b2f5db6b94d174ccf (diff) | |
download | eSim-dfc268e0863c913a1b8726cd54eea3b40caf7c67.tar.gz eSim-dfc268e0863c913a1b8726cd54eea3b40caf7c67.tar.bz2 eSim-dfc268e0863c913a1b8726cd54eea3b40caf7c67.zip |
upgrade ngspice to v31
Diffstat (limited to 'Windows/spice/examples/xspice/d_lut/mult4bit.spi')
-rw-r--r-- | Windows/spice/examples/xspice/d_lut/mult4bit.spi | 127 |
1 files changed, 127 insertions, 0 deletions
diff --git a/Windows/spice/examples/xspice/d_lut/mult4bit.spi b/Windows/spice/examples/xspice/d_lut/mult4bit.spi new file mode 100644 index 00000000..acad1cec --- /dev/null +++ b/Windows/spice/examples/xspice/d_lut/mult4bit.spi @@ -0,0 +1,127 @@ +* mult4bit.spi --- +* +* Example use of d_lut and d_genlut xspice models +* +* 4 bit parallel multiplier using the d_genlut xspice cell to represent +* full and half adders, and using the d_lut xspice cell to represent the +* AND gates. +* +* The LUTs are represented by a string indicating the output for each +* combination of inputs. So a 2-input AND gate is represented by +* "0001". The d_genlut model allows multiple outputs, and the string +* result is the same as a d_lut with the strings for each output +* concatenated. So the sum output of a full adder is "01101001" +* (A ^ B ^ C), and the carry output is "00010111" (AB + BC + AC), so the +* string representation of the d_genlut output is "0110100100010111". +* +* subcircuit inputs are aa[3:0] and ab[3:0], output is ap[7:0] +* testbench inputs are a[3:0] and b[3:0], output is p[7:0] +*--------------------------------------------------------------------------- + +.subckt mult4bit ap7 ap6 ap5 ap4 ap3 ap2 ap1 ap0 aa3 aa2 aa1 aa0 ab3 ab2 ab1 ab0 + +* A-to-D and D-to-A bridges +.MODEL todig_3v adc_bridge(in_high=0.7 in_low=0.3 rise_delay=100n fall_delay=100n) +.MODEL toana_3v dac_bridge(out_high=1.0 out_low=0.0) + +AA2D00 [ab3 ab2 ab1 ab0 aa3 aa2 aa1 aa0] [db3 db2 db1 db0 da3 da2 da1 da0] todig_3v +AD2A00 [dp7 dp6 dp5 dp4 dp3 dp2 dp1 dp0] [ap7 ap6 ap5 ap4 ap3 ap2 ap1 ap0] toana_3v + +* Instantiate the 4-bit multiplier +* LUT model representing a 2-input AND gate +.model d_lut_and2 d_lut (rise_delay=50n fall_delay=50n input_load=1.0p ++ table_values "0001") + +* genLUT model representing a half adder +.model d_genlut_ha d_genlut (rise_delay=[50n 50n] fall_delay=[50n 50n] ++ input_load=[1.0p 1.0p] input_delay=[2n 2n] table_values "01100001") + +* genLUT model representing a full adder +.model d_genlut_fa d_genlut (rise_delay=[50n 50n] fall_delay=[50n 50n] ++ input_load=[1.0p 1.0p 1.0p] input_delay=[2n 2n 2n] table_values "0110100100010111") + +* Instantiate the 4-bit multiplier +AAND00 [da0 db0] dp0 d_lut_and2 +AAND10 [da1 db0] h0a d_lut_and2 +AAND11 [da0 db1] h0b d_lut_and2 +AAND20 [da2 db0] f0a d_lut_and2 +AAND21 [da1 db1] f0b d_lut_and2 +AAND22 [da0 db2] h1b d_lut_and2 +AAND30 [da3 db0] f1a d_lut_and2 +AAND31 [da2 db1] f1b d_lut_and2 +AAND32 [da1 db2] f2b d_lut_and2 +AAND33 [da0 db3] h2b d_lut_and2 +AAND40 [da3 db1] h3b d_lut_and2 +AAND41 [da2 db2] f3b d_lut_and2 +AAND42 [da1 db3] f4b d_lut_and2 +AAND50 [da3 db2] f5b d_lut_and2 +AAND51 [da2 db3] f6b d_lut_and2 +AAND60 [da3 db3] f7b d_lut_and2 + +AHA0 [h0a h0b] [dp1 f0c] d_genlut_ha +AHA1 [h1a h1b] [dp2 f2c] d_genlut_ha +AHA2 [h2a h2b] [dp3 f4c] d_genlut_ha +AHA3 [h3a h3b] [f3a f5a] d_genlut_ha + +AFA0 [f0a f0b f0c] [h1a f1c] d_genlut_fa +AFA1 [f1a f1b f1c] [f2a h3a] d_genlut_fa +AFA2 [f2a f2b f2c] [h2a f3c] d_genlut_fa +AFA3 [f3a f3b f3c] [f4a f5c] d_genlut_fa +AFA4 [f4a f4b f4c] [dp4 f6c] d_genlut_fa +AFA5 [f5a f5b f5c] [f6a f7a] d_genlut_fa +AFA6 [f6a f6b f6c] [dp5 f7c] d_genlut_fa +AFA7 [f7a f7b f7c] [dp6 dp7] d_genlut_fa + +.ends + +* Testbench to exercise the multiplier + +* Eight pulsed voltage sources to run through the bits of a and b +VV7 b3 0 DC=0 PULSE(0 1 6400u 100n 100n 6400u 12800u) +VV6 b2 0 DC=0 PULSE(0 1 3200u 100n 100n 3200u 6400u) +VV5 b1 0 DC=0 PULSE(0 1 1600u 100n 100n 1600u 3200u) +VV4 b0 0 DC=0 PULSE(0 1 800u 100n 100n 800u 1600u) +VV3 a3 0 DC=0 PULSE(0 1 400u 100n 100n 400u 800u) +VV2 a2 0 DC=0 PULSE(0 1 200u 100n 100n 200u 400u) +VV1 a1 0 DC=0 PULSE(0 1 100u 100n 100n 100u 200u) +VV0 a0 0 DC=0 PULSE(0 1 50u 100n 100n 50u 100u) + +* Give a capacitive load to the outputs +C7 p7 0 10f +C6 p6 0 10f +C5 p5 0 10f +C4 p4 0 10f +C3 p3 0 10f +C2 p2 0 10f +C1 p1 0 10f +C0 p0 0 10f + +Xmult4 p7 p6 p5 p4 p3 p2 p1 p0 a3 a2 a1 a0 b3 b2 b1 b0 mult4bit + +* Run the transient simulation + +.control + +tran 50us 12825us 25us +linearize + +let aa = (((v(a3))*2 + v(a2))*2 + v(a1))*2 + v(a0) +let bb = (((v(b3))*2 + v(b2))*2 + v(b1))*2 + v(b0) + +let pp = (((((((v(p7))*2 + v(p6))*2 + v(p5))*2 + v(p4))*2 + v(p3))*2 + v(p2))*2 + v(p1))*2 + v(p0) + +let pp_gold = aa * bb + +plot aa bb pp + +let err = vecmax(abs(pp - pp_gold)) + +if $&err > 1e-6 + echo "ERROR: multiplier output does not match golden response" +else + echo "INFO: multiplier output does match golden response" +end + +.endc + +.end |