diff options
author | Rahul Paknikar | 2021-01-08 12:47:23 +0530 |
---|---|---|
committer | GitHub | 2021-01-08 12:47:23 +0530 |
commit | e6f48f5b1bf22a1d048b44ed4416b4315a461306 (patch) | |
tree | fd357549a236cdc652f0b6d2919beee0cee7faa5 /Windows/spice/examples/Monte_Carlo/MC_ring.sp | |
parent | ac223c4a69c701ad0a247401acdc48b8b6b6dba6 (diff) | |
parent | 6b512cbf954273b0f21d3800d10a7ad42a759425 (diff) | |
download | eSim-e6f48f5b1bf22a1d048b44ed4416b4315a461306.tar.gz eSim-e6f48f5b1bf22a1d048b44ed4416b4315a461306.tar.bz2 eSim-e6f48f5b1bf22a1d048b44ed4416b4315a461306.zip |
Merge pull request #161 from rahulp13/installersi2.1
fixed key issue for ubuntu 20+; updated installers for windows os
Diffstat (limited to 'Windows/spice/examples/Monte_Carlo/MC_ring.sp')
-rw-r--r-- | Windows/spice/examples/Monte_Carlo/MC_ring.sp | 286 |
1 files changed, 0 insertions, 286 deletions
diff --git a/Windows/spice/examples/Monte_Carlo/MC_ring.sp b/Windows/spice/examples/Monte_Carlo/MC_ring.sp deleted file mode 100644 index 3ffab2a3..00000000 --- a/Windows/spice/examples/Monte_Carlo/MC_ring.sp +++ /dev/null @@ -1,286 +0,0 @@ -Perform Monte Carlo simulation in ngspice -* 25 stage Ring-Osc. BSIM3 with statistical variation of various model parameters -* cd into ngspice/examples/Monte_Carlo -* start in interactive mode 'ngspice MC_ring.sp' with several plots for output -* or start in batch mode, controlled by .control section (Control mode) -* with 'ngspice -b -r MC_ring.raw -o MC_ring.log MC_ring.sp'. - -vin in out dc 0.5 pulse 0.5 0 0.1n 5n 1 1 1 -vdd dd 0 dc 3.3 -vss ss 0 dc 0 -ve sub 0 dc 0 -vpe well 0 dc 3.3 - -.subckt inv1 dd ss sub well in out -mn1 out in ss sub n1 w=2u l=0.35u as=3p ad=3p ps=4u pd=4u -mp1 out in dd well p1 w=4u l=0.35u as=7p ad=7p ps=6u pd=6u -.ends inv1 - -.subckt inv5 dd ss sub well in out -xinv1 dd ss sub well in 1 inv1 -xinv2 dd ss sub well 1 2 inv1 -xinv3 dd ss sub well 2 3 inv1 -xinv4 dd ss sub well 3 4 inv1 -xinv5 dd ss sub well 4 out inv1 -.ends inv5 - -xinv1 dd ss sub well in out5 inv5 -xinv2 dd ss sub well out5 out10 inv5 -xinv3 dd ss sub well out10 out15 inv5 -xinv4 dd ss sub well out15 out20 inv5 -xinv5 dd ss sub well out20 out inv5 -xinv11 dd 0 sub well out buf inv1 -cout buf ss 0.2pF -* -.options noacct -.control - save buf $ we just need buf, save memory by more than 10x - let mc_runs = 30 $ number of runs for monte carlo - let run = 0 $ number of actual run - set curplot = new $ create a new plot - set curplottitle = "Transient outputs" - set plot_out = $curplot $ store its name to 'plot_out' - set curplot = new $ create a new plot - set curplottitle = "FFT outputs" - set plot_fft = $curplot $ store its name to 'plot_fft' - set curplot = new $ create a new plot - set curplottitle = "Oscillation frequency" - set max_fft = $curplot $ store its name to 'max_fft' - let mc_runsp = mc_runs + 1 - let maxffts = unitvec(mc_runsp) $ vector for storing max measure results - let halfffts = unitvec(mc_runsp)$ vector for storing measure results at -40dB rising -* -* define distributions for random numbers: -* unif: uniform distribution, deviation relativ to nominal value -* aunif: uniform distribution, deviation absolut -* gauss: Gaussian distribution, deviation relativ to nominal value -* agauss: Gaussian distribution, deviation absolut - define unif(nom, var) (nom + (nom*var) * sunif(0)) - define aunif(nom, avar) (nom + avar * sunif(0)) - define gauss(nom, var, sig) (nom + (nom*var)/sig * sgauss(0)) - define agauss(nom, avar, sig) (nom + avar/sig * sgauss(0)) -* -* We want to vary the model parameters vth0, u0, tox, lint, and wint -* of the BSIM3 model for the NMOS and PMOS transistors. -* We may obtain the nominal values (nom) by manually extracting them from -* the parameter set. Here we get them automatically and store them into -* vectors. This has the advantage that you may change the parameter set -* without having to look up the values again. - let n1vth0=@n1[vth0] - let n1u0=@n1[u0] - let n1tox=@n1[tox] - let n1lint=@n1[lint] - let n1wint=@n1[wint] - let p1vth0=@p1[vth0] - let p1u0=@p1[u0] - let p1tox=@p1[tox] - let p1lint=@p1[lint] - let p1wint=@p1[wint] - -* -* run the simulation loop - dowhile run <= mc_runs - * run=0 simulates with nominal parameters - if run > 0 - setplot $max_fft - altermod @n1[vth0] = gauss(n1vth0, 0.1, 3) - altermod @n1[u0] = gauss(n1u0, 0.05, 3) - altermod @n1[tox] = gauss(n1tox, 0.1, 3) - altermod @n1[lint] = gauss(n1lint, 0.1, 3) - altermod @n1[wint] = gauss(n1wint, 0.1, 3) - altermod @p1[vth0] = gauss(p1vth0, 0.1, 3) - altermod @p1[u0] = gauss(p1u0, 0.1, 3) - altermod @p1[tox] = gauss(p1tox, 0.1, 3 ) - altermod @p1[lint] = gauss(p1lint, 0.1, 3) - altermod @p1[wint] = gauss(p1wint, 0.1, 3) - end - tran 15p 100n 0 -* select stop and step so that number of data points after linearization is not too -* close to 8192, which would yield varying number of line length and thus scale for fft. -* -* We have to figure out what to do if a single simulation will not converge. -* There is the variable 'sim_status' which is set to 1 if the simulation -* fails with ’xx simulation(s) aborted’, e.g. because of non-convergence. -* Then we might skip this run and continue with a new run. -* - echo Simulation status $sim_status - let simstat = $sim_status - if simstat = 1 - if run = mc_runs - echo go to end - else - echo go to next run - end - destroy $curplot - goto next - end - - set run ="$&run" $ create a variable from the vector - set mc_runs ="$&mc_runs" $ create a variable from the vector - echo simulation run no. $run of $mc_runs - set dt = $curplot - * save the linearized data for having equal time scales for all runs - linearize buf $ linearize only buf, no other vectors needed - destroy $dt $ delete the tran i plot - set dt = $curplot $ store the current plot to dt (tran i+1) - setplot $plot_out $ make 'plt_out' the active plot - * firstly save the time scale once to become the default scale - if run=0 - let time={$dt}.time - end - let vout{$run}={$dt}.buf $ store the output vector to plot 'plot_out' - setplot $dt $ go back to the previous plot (tran i+1) - fft buf $ run fft on vector buf - destroy $dt $ delete the tran i+1 plot - let buf2=db(mag(buf)) - * find the frequency where buf has its maximum of the fft signal - meas sp fft_max MAX_AT buf2 from=0.1G to=0.7G - * find the frequency where buf is -40dB at rising fft signal - meas sp fft_40 WHEN buf2=-40 RISE=1 from=0.1G to=0.7G - echo - echo - * store the fft vector - set dt = $curplot $ store the current plot to dt (spec i) - setplot $plot_fft $ make 'plot_fft' the active plot - if run=0 - let frequency={$dt}.frequency - end - let fft{$run}={$dt}.buf $ store the output vector to plot 'plot_fft' - * store the measured value - setplot $max_fft $ make 'max_fft' the active plot - let maxffts[{$run}]={$dt}.fft_max - let halfffts[{$run}]={$dt}.fft_40 - let run = run + 1 - label next - reset - end -***** plotting ********************************************************** -if $?batchmode - echo - echo Plotting not available in batch mode - echo Write linearized vout0 to vout{$mc_runs} to rawfile $rawfile - echo - write $rawfile {$plot_out}.allv - rusage - quit -else - setplot $plot_out - plot vout0 ylabel 'RO output, original parameters' $ just plot the tran output with nominal parameters - setplot $plot_fft - settype decibel ally - plot db(mag(ally)) xlimit .1G 1G ylimit -80 10 ylabel 'fft output' -* -* create a histogram from vector maxffts - setplot $max_fft $ make 'max_fft' the active plot - set startfreq=400MEG - set bin_size=5MEG - set bin_count=20 - compose xvec start=$startfreq step=$bin_size lin=$bin_count $ requires variables as parameters - settype frequency xvec - let bin_count=$bin_count $ create a vector from the variable - let yvec=unitvec(bin_count) $ requires vector as parameter - let startfreq=$startfreq - let bin_size=$bin_size - * put data into the correct bins - let run = 0 - dowhile run < mc_runs - set run = $&run $ create a variable from the vector - let val = maxffts[{$run}] - let part = 0 - * Check if val fits into a bin. If yes, raise bin by 1 - dowhile part < bin_count - if ((val < (startfreq + (part+1)*bin_size)) & (val > (startfreq + part*bin_size))) - let yvec[part] = yvec[part] + 1 - break - end - let part = part + 1 - end - let run = run + 1 - end - - * plot the histogram - set plotstyle=combplot - plot yvec-1 vs xvec xlabel 'oscillation frequency' ylabel 'bin count' $ subtract 1 because we started with unitvec containing ones - - * plot simulation series - set plotstyle=linplot - let xx = vector(mc_runsp) - settype frequency maxffts - plot maxffts vs xx xlabel 'iteration no.' ylabel 'RO frequency' - -* calculate jitter - let diff40 = (vecmax(halfffts) - vecmin(halfffts))*1e-6 - echo - echo Max. jitter is "$&diff40" MHz -end - rusage -.endc -******************************************************************************** -.model n1 nmos -+level=8 -+version=3.3.0 -+tnom=27.0 -+nch=2.498e+17 tox=9e-09 xj=1.00000e-07 -+lint=9.36e-8 wint=1.47e-7 -+vth0=.6322 k1=.756 k2=-3.83e-2 k3=-2.612 -+dvt0=2.812 dvt1=0.462 dvt2=-9.17e-2 -+nlx=3.52291e-08 w0=1.163e-6 -+k3b=2.233 -+vsat=86301.58 ua=6.47e-9 ub=4.23e-18 uc=-4.706281e-11 -+rdsw=650 u0=388.3203 wr=1 -+a0=.3496967 ags=.1 b0=0.546 b1=1 -+dwg=-6.0e-09 dwb=-3.56e-09 prwb=-.213 -+keta=-3.605872e-02 a1=2.778747e-02 a2=.9 -+voff=-6.735529e-02 nfactor=1.139926 cit=1.622527e-04 -+cdsc=-2.147181e-05 -+cdscb=0 dvt0w=0 dvt1w=0 dvt2w=0 -+cdscd=0 prwg=0 -+eta0=1.0281729e-02 etab=-5.042203e-03 -+dsub=.31871233 -+pclm=1.114846 pdiblc1=2.45357e-03 pdiblc2=6.406289e-03 -+drout=.31871233 pscbe1=5000000 pscbe2=5e-09 pdiblcb=-.234 -+pvag=0 delta=0.01 -+wl=0 ww=-1.420242e-09 wwl=0 -+wln=0 wwn=.2613948 ll=1.300902e-10 -+lw=0 lwl=0 lln=.316394 lwn=0 -+kt1=-.3 kt2=-.051 -+at=22400 -+ute=-1.48 -+ua1=3.31e-10 ub1=2.61e-19 uc1=-3.42e-10 -+kt1l=0 prt=764.3 -+noimod=2 -+af=1.075e+00 kf=9.670e-28 ef=1.056e+00 -+noia=1.130e+20 noib=7.530e+04 noic=-8.950e-13 -**** PMOS *** -.model p1 pmos -+level=8 -+version=3.3.0 -+tnom=27.0 -+nch=3.533024e+17 tox=9e-09 xj=1.00000e-07 -+lint=6.23e-8 wint=1.22e-7 -+vth0=-.6732829 k1=.8362093 k2=-8.606622e-02 k3=1.82 -+dvt0=1.903801 dvt1=.5333922 dvt2=-.1862677 -+nlx=1.28e-8 w0=2.1e-6 -+k3b=-0.24 prwg=-0.001 prwb=-0.323 -+vsat=103503.2 ua=1.39995e-09 ub=1.e-19 uc=-2.73e-11 -+rdsw=460 u0=138.7609 -+a0=.4716551 ags=0.12 -+keta=-1.871516e-03 a1=.3417965 a2=0.83 -+voff=-.074182 nfactor=1.54389 cit=-1.015667e-03 -+cdsc=8.937517e-04 -+cdscb=1.45e-4 cdscd=1.04e-4 -+dvt0w=0.232 dvt1w=4.5e6 dvt2w=-0.0023 -+eta0=6.024776e-02 etab=-4.64593e-03 -+dsub=.23222404 -+pclm=.989 pdiblc1=2.07418e-02 pdiblc2=1.33813e-3 -+drout=.3222404 pscbe1=118000 pscbe2=1e-09 -+pvag=0 -+kt1=-0.25 kt2=-0.032 prt=64.5 -+at=33000 -+ute=-1.5 -+ua1=4.312e-9 ub1=6.65e-19 uc1=0 -+kt1l=0 -+noimod=2 -+af=9.970e-01 kf=2.080e-29 ef=1.015e+00 -+noia=1.480e+18 noib=3.320e+03 noic=1.770e-13 -.end |