1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 4: The Wavelike properties of particles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.10: Group_velocity_of_a_wave_packet_in_terms_of_phase_velocity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"disp('Ex-4.10');\n",
"printf(' Group velocity is found out from Eq. 4.18.\n Since k=2*pi/w ; Vphase= w/k \n w/k = sqrt(g/k) /n w=sqrt(g*k)');\n",
"printf('\ndifferetiating on both sides\n');\n",
"printf('dw=1/2 * sqrt(g) * k^-1/2 * dk\n dw= 1/2 * sqrt(g/k)\n Hence Vgroup= Vphase/2');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.1: Solution_for_a_b_c_d_and_e.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Ex: 4.1 ');\n",
"h=6.6*10^-34; // h(planck's constant)= 6.6*10^-34 \n",
"m1= 10^3;v1=100;; // for automobile\n",
"w1= h/(m1*v1); // ['w'-wavelength in metre'm'-mass in Kg 'v'-velocity in metres/sec.] of the particles \n",
"printf('Wavelength of the automobile is %1.2e m\n',w1 );\n",
"m2=10*(10^-3);v2= 500; // for bullet\n",
"w2=h/(m2*v2);\n",
"printf('Wavelength of the bullet is %1.2e m\n ',w2 );\n",
"m3=(10^-9)*(10^-3); v3=1*10^-2;\n",
"w3=h/(m3*v3);\n",
"printf('Wavelength of the smoke particle is %1.2e m\n',w3 );\n",
"m4=9.1*10^-31;k=1*1.6*10^-19; // k- kinetic energy of the electron & using 1ev = 1.6*10^-19 joule\n",
"p=sqrt(2*m4*k); // p=momentum of electron ;from K=1/2*m*v^2\n",
"w4=h/p;\n",
"printf('Wavelength of the electron(1ev) is %1.2fnm\n',w4*10^9 );\n",
"hc=1240;pc=100 // In the extreme relativistc realm, K=E=pc; Given pc=100MeV,hc=1240MeV \n",
"w5= hc/pc;\n",
"printf('Wavelength of the electron (100Mev) is %1.2f fm\n',w5);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.2: Minimum_uncertainity_in_wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear \n",
"clc \n",
"disp('Ex-4.2');\n",
"// w=wavelength; consider k=2*(pi/w); \n",
"// differentiate k w.r.t w and replace del(k)/del(w) = 1 for equation.4.3\n",
"// which gives del(w)= w^2 /(2*pi*del(x)), hence \n",
"w=20; delx=200; // delx=200cm and w=20cm\n",
"delw=(w^2)/(delx*2*%pi);\n",
"printf('Hence uncertainity in length is %1.2f cm',delw);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.3: Validity_of_the_claim.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Ex-4.3')\n",
"delt=1; //consider time interval of 1 sec\n",
"delw=1/delt; // since delw*delt =1 from equation 4.4\n",
"delf=0.01 //calculated accuracy is 0.01Hz\n",
"delwc =2*%pi*delf // delwc-claimed accuracy from w=2*pi*f\n",
"printf('The minimum uncertainity calculated is 1rad/sec. The claimed accuracy is %.3f rad/sec\n',delwc);\n",
"if delw==delwc then disp('Valid claim');\n",
"end\n",
"if delw~=delwc then disp('Invalid claim');\n",
"end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.4: Solution_for_a_and_b.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Ex-4.4(a)');\n",
"m=9.11*10^-31;v=3.6*10^6; //'m','v' - mass an velocity of the electron in SI units\n",
"h=1.05*10^-34; //planck's constant in SI\n",
"p=m*v; //momentum\n",
"delp=p*0.01;//due to 1% precision in p\n",
"delx = h/delp//uncertainity in position\n",
"printf('Uncertainity in position is %1.2f nm',delx*10^9);\n",
"disp('Ex-4.4((b)')\n",
"printf('Since the motion is strictly along X-direction, its velocity in Y direction is absolutely zero.\n So uncertainity in velocity along y is zero=> uncertainity in position along y is infinite. \nSo nothing can be said about its position/motion along Y')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.5: Solution_for_a_and_b.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Ex-4.5(a)');\n",
"m=0.145;v=42.5; //'m','v' - mass an velocity of the electron in SI units\n",
"h=1.05*10^-34; //planck's constant in SI\n",
"p=m*v; //momentum\n",
"delp=p*0.01;//due to 1% precision in p\n",
"delx = h/delp//uncertainity in position\n",
"printf('Uncertainity in position is %1.2e',delx);\n",
"disp('Ex-4.5(b)');\n",
"printf('Motion along y is unpredictable as long as the veloity along y is exactly known(as zero).');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.6: Uncertainity_in_x_component.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"disp('Ex-4.6')\n",
"printf('The uncertainity in the poisition of electron after it passes through the slit is reduced to width of the slit\n delx=a\n');\n",
"printf('The uncertainity in momentum = h/a\n');\n",
"printf('Position of landing(angle t) = sin t = tan t = delz/dely =(h/a)/2*pi*a= w/2*pi*a \nwhere w=wavelenghth\n');\n",
"printf('Rewriting the above expression a*sint = w/(2*pi)\n which is similar to a*sint = w (neglect 2*pi)as found out by first minimum in diffraction by a slit of width a');\n",
"disp('It proves a close connection between wave behaviour and uncertainity principle');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.7: Range_of_kinetic_energy_of_an_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Ex-4.7');\n",
"mc2=2.15*10^-4; //mc2 is the mass of the electron, concidered in Mev for the simplicity in calculations\n",
"hc=197 // The value of h*c in Mev.fm for simplicity\n",
"delx= 10 // Given uncertainity in position=diameter of nucleus= 10 fm\n",
"delp= hc/delx ; //Uncertainiy in momentum per unit 'c' i.e (Mev/c) delp= h/delx =(h*c)/(c*delx);hc=197 Mev.fm 1Mev=1.6*10^-13 Joules')\n",
"p=delp; // Equating delp to p as a consequence of equation 4.10\n",
"K1=[[p]^2]+[mc2]^2 // The following 3 steps are the steps invlolved in calculating K.E= sqrt((p*c)^2 + (mc^2)^2)- m*c^2\n",
"K1=sqrt(K1)\n",
"K1= K1-(mc2);\n",
"printf('Kinetic energy was found out to be %d Mev', K1)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.8: Solution_for_a_b_and_c.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear \n",
"clc\n",
"disp('Ex-4.8')\n",
"h=6.58*10^-16; // plack's constant\n",
"delt1=26*10^-9;E=140*10^6 //given values of lifetime and rest energy of charged pi meson\n",
"delE=h/delt1; k=delE/E; // k is the measure of uncertainity\n",
"printf('Uncertainity in energy of charged pi meson is %1.2e\n',k);\n",
"delt2=8.3*10^-17;E=135*10^6; //given values of lifetime and rest energy of uncharged pi meson\n",
"delE=h/delt2; k=delE/E;\n",
"printf('Uncertainity in energy of uncharged pi meson is %1.2e\n',k);\n",
"delt3=4.4*10^-24;E=765*10^6; //given values of lifetime and rest energy of rho meson\n",
"delE=h/delt3; k=delE/E;\n",
"printf('Uncertainity in energy of rho meson is %.1f\n',k);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.9: minimum_velocity_of_the_billiard_ball.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Ex-4.9')\n",
"h=1.05*10^-34; //value of planck's constant in J.sec\n",
"delx= 1; // uncertainity in positon= dimension of the ball\n",
"delp=h/delx; // uncertainity in momentum \n",
"m=0.1; //mass of the ball in kg\n",
"delv=delp/m; // uncertainity in velocity\n",
"printf('The value of minimum velocity was found out to be %1.2e m/sec',delv);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|