{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 11: Surface water collections" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.1: Example_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//initialisation of variables\n", "s=20//mph\n", "t=90//min\n", "w=1.31//ft\n", "h=7.5//miles\n", "h1=0.22//ft\n", "t1=1100//min\n", "t2=6.0//min\n", "p=32.2//ft\n", "l=5.12//length\n", "l1=2.8//length\n", "p1=1400//ft\n", "d=73//depth\n", "h3=2.06//ft\n", "e=173.0//ft\n", "hi=0.2//ft\n", "//CALCULATIONS\n", "W=s*w//mph\n", "hs=h1*[(W)^2/p]^0.53*h^0.47//ft\n", "Ts=t2*(W/p)^0.44*(h/p)^0.28//sec\n", "Td=t1*h/(p*Ts)//min\n", "Ls=l1/(l*(Ts)^2)//ft\n", "D=d/(l*(Ts)^2)//ft\n", "H=(W)^2*[h*(1/(p1*d))]//ft\n", "hr=h3*l1//ft\n", "M=e+hi+hr//ft\n", "//RESULTS\n", "printf('the overwater wind speed=% f mph',W)\n", "printf('the significant wave height=% f ft',hs)\n", "printf('the significant wave period=% f sec',Ts)\n", "printf('the minimum wind duration required to reach the significant wave height=% f min',Td)\n", "printf('the significant wave lenght adn steepness=% f ft',Ls)\n", "printf('the reservoir depth ratio=% f ft',D)\n", "printf('the wind tide or set up=% f ft',H)\n", "printf('the run up =% f ft',hr)\n", "printf('the maximum elevation reached by the waves=% f ft',M)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.2: Example_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//initialisation of variables\n", "g=264//quartz\n", "p=0.39//percent\n", "//CALCULATIONS\n", "S=(1-p)*(g-1)//in\n", "//RESULTS\n", "printf('the hydralic gradient and seepage velocity=% f in',S)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.3: Example_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//initialisation of variables\n", "w=40//ft\n", "k=2*10^-3//cm/sec\n", "p=3.28*10^-3//cfs\n", "h=6.47*10^5//gpd\n", "p1=0.433//ft\n", "m=9//ft\n", "delh=w/(18*9)//in\n", "k1=4.94*10^-4//cm/sec\n", "//CALCULATIONS\n", "Q=k*p*w*(9/18)//cfs\n", "Q1=Q*h//gpd/ft width\n", "P=(1-8/18)*w*p1//Psig\n", "H=k1/k//in\n", "//RESULTS\n", "printf('the seepage through each foot width of the foundation=% f gpd/ft/ width',Q1)\n", "printf('the excess hydrostatic pressure on the upstream side of the bottom of the sheet pilling=% f Psig',P)\n", "printf('the maximum hydraulic gradient and its relations to the coeeficent=% f in',H)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.4: Example_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//initialisation of variables\n", "d=120//ft\n", "w=16//ft\n", "d1=120/0.8//ft\n", "p=60*0.8//ft\n", "h=2//ft\n", "v=18.74*0.8//ft\n", "s=95.23//ft\n", "s1=0.8//ft\n", "//CALCULATIONS\n", "W=d-h*p//ft\n", "S=s*s1//ft\n", "//RESULTS\n", "printf('in succession from the intersection of the upstream slop=% f ft',S)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }