{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6: Fluid dynamics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.1: inward_flow_radial_turbine_32000rpm.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 6.1 inward flow radial turbine 32000rpm\n", "P=150; // Power Output in kW\n", "N=32e3; // Speed in RPM\n", "d1=20/100; // outer diameter of the impeller in m\n", "d2=8/100; // inner diameter of the impeller in m\n", "V1=387; // Absolute Velocity of gas at entry in m/s\n", "V2=193; // Absolute Velocity of gas at exit in m/s\n", "\n", "// part(a) determining mass flow rate\n", "u1=%pi*d1*N/60;\n", "u2=d2*u1/d1;\n", "w_at=u1^2/10e2;\n", "m=P/w_at;\n", "disp ('kg/s' ,m,'(a)mass flow rate is')\n", "\n", "// part (b) determining the percentage energy transfer due to the change of radius\n", "n=((u1^2-u2^2)/2e3)/w_at; \n", "disp ('%',n*100,'(b)percentage energy transfer due to the change of radius is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.2: radially_tipped_Centrifugal_blower_3000rpm.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 6.2 radially tipped Centrifugal blower 3000rpm\n", "P=150; // Power Output in kW\n", "N=3e3; // Speed in RPM\n", "d2=40/100; // outer diameter of the impeller in m\n", "d1=25/100; // inner diameter of the impeller in m\n", "b=8/100; // impeller width at entry in m\n", "n_st=0.7; // stage efficiency\n", "V1=22.67; // Absolute Velocity at entry in m/s\n", "ro=1.25; // density of air in kg/m3\n", "\n", "// part(a) determining the pressure developed\n", "u2=%pi*d2*N/60;\n", "u1=d1*u2/d2;\n", "w_ac=u2^2;\n", "delh_s=n_st*w_ac;\n", "delp=ro*delh_s;\n", "disp ('mm W.G.' ,delp/9.81,'(a)the pressure developed is')\n", "\n", "// part (b) determining the power required\n", "A1=%pi*d1*b;\n", "m=ro*V1*A1;\n", "P=m*w_ac/10e2;\n", "disp('kW',P,'(b)Power required is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3: Calculation_on_an_axial_flow_fan.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 6.3 Calculation on an axial flow fan\n", "N=1.47e3; // Speed in RPM\n", "d=30/100; // Mean diameter of the impeller in m\n", "ro=1.25; // density of air in kg/m3\n", "\n", "// part(b) determining the pressure rise across the fan\n", "u=%pi*d*N/60;\n", "w_c=u^2/3;\n", "delp=ro*w_c;\n", "disp ('mm W.G.' ,delp/9.81,'(b)the pressure rise across the fan is')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }