{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4: Steam Turbine Plants" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.1: Calculations_on_Steam_Turbine_Plant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 4.1 Calculations on Steam Turbine Plant \n", "\n", "p1=25; // Turbine Inlet Pressure in bar\n", "p2=0.065; // Condenser Pressure in bar\n", "n_B=0.82; // Boiler efficiency\n", "delp=p1-p2;\n", "v_w=0.001; // Specific Volume at condenser Pressure in m3/kg\n", "\n", "h1=160.6; // from steam tables at p1=0.065 bar\n", "h2=h1+(delp*100*v_w);\n", "\n", "//part(a) Determining exact and approximate Rankine efficiency of the plant\n", "h3=2800; // from steam table vapour enthalpy at 25 bar\n", "h4=1930; // from steam table\n", "n_rankine_ex=(h3-h4-(h2-h1))/(h3-h1-(h2-h1));\n", "disp ('%',n_rankine_ex*100,'(a)(i) Exact Rankine efficiency is')\n", "\n", "n_rankine_app=(h3-h4)/(h3-h1);\n", "disp ('%',n_rankine_app*100,' (a)(ii)Approximate Rankine efficiency is')\n", "\n", "//part(b) Determining thermal and relative efficiencies of the plant\n", "n_t=0.78; // Turbine Efficiency\n", "CV=26.3*10e2; // Calorific Value of fuel in kJ/kg;\n", "n_th=(n_t*(h3-h4))/(h3-h1);\n", "disp('%',n_th*100,'(b)(i)thermal efficiency of the plant is')\n", "n_rel=n_th/n_rankine_app;\n", "disp('%',n_rel*100,'(ii)relative efficiency of the plant is')\n", "\n", "//part(c) Determining Overall efficiency of the plant\n", "n_o=n_th*n_B;\n", "disp('%',n_o*100,'(c)overall efficiency of the plant is')\n", "\n", "//part(d) Turbine and Overall heat rates\n", "hr_t=3600/n_th; \n", "disp('kJ/kWh',hr_t,'(d)(i)Turbine Heat Rate is')\n", "hr_o=3600/n_o; \n", "disp('kJ/kWh',hr_o,'(d)(ii)overall Heat Rate is')\n", "\n", "//part(e) Steam Consumption per kWh\n", "m_s=3600/(n_t*(h3-h4));\n", "disp('kg/kWh' ,m_s,'(e)Steam Consumption is')\n", "\n", "//part(f) Fuel Consumption per kWh\n", "m_f=3600/(CV*n_o);\n", "disp('kg/kWh' ,m_f,'(f)Fuel Consumption is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2: Steam_Turbine_Plant_for_different_reheat_cycles.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "// scilab Code Exa 4.2 Steam Turbine Plant for different reheat cycles\n", "\n", "p1=160; // Turbine Inlet Pressure in bar\n", "T1=500; // Turbine Entry Temperature in Degree Celsius\n", "p2=0.06; // Condenser Pressure in bar\n", "\n", "// from steam tables at p1=0.06 bar, \n", "h1=147; // Specific Enthalpy of water in kJ/kg\n", "h2=2567; // Specific Enthalpy of steam in kJ/kg\n", "\n", "h3=3295; // from steam table\n", "h4=1947; // from steam table\n", "q_n=h3-h1;\n", "n_N=(h3-h4)/(q_n);\n", "x=(h4-h1)/(h2-h1);\n", "disp('%',n_N*100,'for non reheat cycle plant efficiency is')\n", "disp ('kJ/kWh',3600/n_N,'Turbine Heat Rate is')\n", "disp(x,'final dryness fraction is')\n", "// for reheat cycle\n", "\n", "p(1)=70;\n", "h5(1)=3412; // in kJ/kg\n", "h7(1)=3065; // in kJ/kg\n", "h6(1)=2094; // in kJ/kg\n", "p(2)=50;\n", "h5(2)=3433; // in kJ/kg\n", "h7(2)=2981; // in kJ/kg\n", "h6(2)=2144; // in kJ/kg\n", "p(3)=25;\n", "h5(3)=3475; // in kJ/kg\n", "h7(3)=2826; // in kJ/kg\n", "h6(3)=2249; // in kJ/kg\n", "for i=1:3\n", " q_r(i)=h5(i)-h7(i);\n", "a(i)=(h6(i)-h4)/(q_r(i));\n", "n_r(i)=1-a(i); // exact Rankine efficiency\n", "b(i)=q_r(i)*n_r(i)/n_N;\n", "n_th(i)=(q_n+b(i))*n_N/(q_n+q_r(i));\n", "hr_t(i)=3600/n_th(i);\n", "x(i)=(h6(i)-h1)/(h2-h1);\n", "disp('bar',p(i),'for reheat pressure' )\n", "disp('kJ',q_r(i),'q_R=')\n", "disp('kJ',h6(i)-h4,'H6-H4= ')\n", "disp('%',n_r(i)*100,'Rankine efficiency of the plant is')\n", "disp('%',n_th(i)*100,'thermal efficiency of the plant is')\n", "disp('kJ/kWh',hr_t(i),'Heat Rate is')\n", "disp(x(i),'final dryness fraction is')\n", " \n", "end\n", "\n", "disp('Comment: Error in Textbook, Answers vary due to Round-off Errors')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.3: Calculations_on_Steam_Turbine_Plant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 4.3 Calculations on Steam Turbine Plant \n", "\n", "p1=82.75; // Turbine Inlet Pressure in bar\n", "T1=510; // Turbine Entry Temperature in Degree Celsius\n", "pc=0.042; // Condenser Pressure in bar\n", "H=3420;\n", "n_e=0.85;\n", "gamma=1.4;\n", "n_st1=0.85;\n", "\n", "p2=22.75;\n", "// for regenerative cycle\n", "hs(1)=121.4; // from steam tables and mollier chart\n", "p(6)=p2; // pressure at bleed point 1\n", "Hs(6)=3080; // Enthalpy of steam at bleed point 1\n", "h1s=931;\n", "hs(6)=h1s; // Enthalpy of water at bleed point 1\n", "H_22=H-(n_st1*(H-h1s));\n", "\n", "p(5)=10.65; // pressure at bleed point 2\n", "Hs(5)=2950; // Enthalpy of steam at bleed point 2\n", "hs(5)=772; // Enthalpy of water at bleed point 2\n", "\n", "p(4)=4.35; // pressure at bleed point 3\n", "Hs(4)=2730; // Enthalpy of steam at bleed point 3\n", "hs(4)=612; // Enthalpy of water at bleed point 3\n", "\n", "p(3)=1.25; // pressure at bleed point 4\n", "Hs(3)=2590; // Enthalpy of steam at bleed point 4\n", "hs(3)=444; // Enthalpy of water at bleed point 4\n", "\n", "p(2)=0.6; // pressure at bleed point 5\n", "Hs(2)=2510; // Enthalpy of steam at bleed point 5\n", "hs(2)=360; // Enthalpy of water at bleed point 5\n", "\n", "m=1;\n", "h_c=121.4;\n", "x=0.875;\n", "disp(x,'(a)the final state at point C is')\n", "for i=2:6\n", "alpha(i)=(Hs(i)-hs(i-1))/(Hs(i)-hs(i));\n", "m=m*alpha(i); \n", "end\n", "disp('kg',m,'(b)The mass of steam raised per kg of steam reaching the condenser is')\n", "// part(c) thermal efficiency with feed heating\n", "H_c=2250;\n", "h_n=hs(6);\n", "n_th=1-((H_c-h_c)/(m*(H-h_n)));\n", "hr_t=3600/n_th;\n", "//(c) the improvement in thermal efficiency and heat rate\n", "c=H-H_c;\n", "d=H-h_c;\n", "n_R=(H-H_c)/(H-h_c);\n", "hr_R=3600/n_R;\n", "deln_th=(n_th-n_R)/n_R;\n", "disp ('%',deln_th*100,'(c)therefore, the improvement in efficiency is')\n", "delhr_t=(hr_R-hr_t)/hr_R;\n", "disp ('%',delhr_t*100,' and, the improvement in heat rate is')\n", "\n", "// part(d) decrease of steam flow to the condenser per kWh due to feed heating\n", "q_s=m*(H-h_n);\n", "q_r=H_c-h_c;\n", "w_t=q_s-q_r;\n", "wt_m=w_t/m;\n", "sf_r=3600/wt_m;\n", "s_c=sf_r/m;\n", "// without feed heating\n", "wt_f=H-H_c;\n", "m_wf=3600/wt_f;\n", "sr_c=(m_wf-s_c)/m_wf;\n", "disp ('%',sr_c*100,'(d)the decrease in steam reaching the condenser is')\n", "disp('comment: the calculation for the improvement in efficiency is wrong in the book.')\n", " " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }