{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Gas Turbine Plants" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: Constant_Pressure_Gas_Turbine_Plant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 3.1 Constant Pressure Gas Turbine Plant\n", "\n", "t1=50; // Minimum Temperature in degree C\n", "T1=t1+273; // in Kelvin\n", "t3=950; // Maximum Temperature in degree C\n", "T3=t3+273; // in Kelvin\n", "n_c=0.82; // Compressor Efficiency\n", "n_t=0.87; // Turbine Efficiency\n", "gamma=1.4; // Specific Heat Ratio\n", "cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n", "beeta=T3/T1;\n", "alpha=beeta*n_c*n_t;\n", "T_opt=sqrt(alpha); // For maximum power output, the temperature ratios in the turbine and compressor\n", "\n", "// part(a) Determining pressure ratio of the turbine and compressor\n", "pr=T_opt^(gamma/(gamma-1));\n", "disp(pr,'(a)Pressure Ratio is')\n", "\n", "// part(b) Determining maximum power output per unit flow rate\n", "wp_max=cp*T1*((T_opt-1)^2)/n_c;\n", "disp('kW/(kg/s)',wp_max,'(b)maximum power output per unit flow rate is')\n", "\n", "// part(c) Determining thermal efficiency of the plant for maximum power output\n", "n_th=(T_opt-1)^2/((beeta-1)*n_c-(T_opt-1));\n", "disp('%',n_th*100,'(c)thermal efficiency of the plant for maximum power output is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: Gas_Turbine_Plant_with_an_exhaust_HE.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 3.2 Gas Turbine Plant with an exhaust HE\n", "T1=300; // Minimum cycle Temperature in Kelvin\n", "funcprot(0);\n", "pr=10; // pressure ratio of the turbine and compressor\n", "T3=1500; // Maximum cycle Temperature in Kelvin\n", "m=10; // mass flow rate through the turbine and compressor in kg/s\n", "e(1)=0.8; // thermal ratio of the heat exchanger\n", "e(2)=1;\n", "n_c=0.82; // Compressor Efficiency\n", "n_t=0.85; // Turbine Efficiency\n", "gamma=1.4; // Specific Heat Ratio\n", "cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n", "beeta=T3/T1;\n", "T2s=T1*(pr^((gamma-1)/gamma));\n", "T2=T1+((T2s-T1)/n_c);\n", "T4s=T3*(pr^(-((gamma-1)/gamma)));\n", "T4=T3-((T3-T4s)*n_t);\n", "\n", "for i=1:2\n", "T5=T2+e(i)*(T4-T2);\n", "T6=T4-(T5-T2);\n", "Q_s=cp*(T3-T5);\n", "Q_r=cp*(T6-T1);\n", "// part(a) Determining power developed\n", "w_p=Q_s-Q_r;\n", "P=m*w_p;\n", "printf('for effectiveness=%f, \n (a)the power developed is %f kW',e(i),P)\n", "\n", "// part(b) Determining thermal efficiency of the plant\n", "n_th=1-(Q_r/Q_s);\n", "disp ('%',n_th*100,'(b)thermal efficiency of the plant is') \n", "end\n", "\n", "// part(c) Determining efficiencies of the ideal Joules cycle\n", "n_Joule=1-(pr^((gamma-1)/gamma)/beeta);\n", "disp('%',n_Joule*100,'(c)efficiency of the ideal Joules cycle with perfect heat exchange is')\n", "n_Carnot=1-(T1/T3);\n", "disp('%',n_Carnot*100,'and the Carnot cycle efficiency is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3: ideal_reheat_cycle_Gas_Turbine_Plant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 3.3 ideal reheat cycle gas turbine\n", "T1=300; // Minimum cycle Temperature in Kelvin\n", "r=25; // pressure ratio of the turbine and compressor\n", "gamma=1.4;\n", "T3=1500; // Maximum cycle Temperature in Kelvin\n", "cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n", "beeta=T3/T1;\n", "n=(gamma-1)/gamma;\n", "t=(r^n);\n", "d=1/sqrt(t);\n", "// part(a) Determining mass flow rate through the turbine and compressor\n", "c=2*beeta*[1-d];\n", "wp_max=cp*T1*(c+1-t);\n", "m=1000/wp_max;\n", "disp ('kg/s',m,'(a)mass flow rate through the turbine and compressor is')\n", "\n", "// part(b) Determining thermal efficiency of the plant\n", "n_th=(c+1-t)/(2*beeta-t-(beeta/sqrt(t)));\n", "disp ('%',n_th*100,'(b)thermal efficiency of the plant is') " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: Calculations_on_Gas_Turbine_Plant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 3.4 Calculations on Gas Turbine Plant for an ideal reheat cycle with optimum reheat pressure and perfect exhaust heat exchange\n", "T1=300; // Minimum cycle Temperature in Kelvin\n", "r=25; // pressure ratio of the turbine and compressor\n", "T3=1500; // Maximum cycle Temperature in Kelvin\n", "gamma=1.4; // Specific Heat Ratio\n", "cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n", "beeta=T3/T1;\n", "n=(gamma-1)/gamma;\n", "t=(r^n);\n", "d=1/sqrt(t);\n", "// part(a) Determining mass flow rate through the turbine and compressor\n", "c=2*beeta*[1-d];\n", "wp_max=cp*T1*(c+1-t);\n", "m=1000/wp_max;\n", "disp ('kg/s' ,m,' mass flow rate through the turbine and compressor is')\n", "\n", "\n", "// part(b) Determining thermal efficiency of the plant\n", "c=sqrt(t)*(sqrt(t)+1)/(2*beeta);\n", "n_th=1-c;\n", "disp ('%',n_th*100,' thermal efficiency of the plant is') " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5: Calculations_on_Gas_Turbine_Plant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// scilab Code Exa 3.5 Calculations on Gas Turbine Plant \n", "\n", "P=10e4; // Power Output in kW\n", "T1=310; // Minimum cycle Temperature in Kelvin\n", "p1=1.013; // Compressor Inlet Pressure in bar\n", "pr_c=8; // Compressor pressure ratio\n", "gamma=1.4;\n", "gamma_g=1.33;\n", "R=0.287; \n", "p2=pr_c*p1; // Compressor Exit Pressure in bar\n", "T3=1350; // Maximum cycle Temperature(Turbine inlet temp) in Kelvin\n", "n_c=0.85; // Compressor Efficiency\n", "p3=0.98*p2; // turbine inlet pressure\n", "p4=1.02; // turbine exit pressure in bar\n", "CV=40*10e2; // Calorific Value of fuel in kJ/kg;\n", "n_B=0.98; // Combustion Efficiency\n", "n_m=0.97; // Mechanical efficiency\n", "n_t=0.9; // Turbine Efficiency\n", "n_G=0.98; // Generator Efficiency\n", "cp_a=1.005; // Specific Heat of air at Constant Pressure in kJ/(kgK)\n", "\n", "// Air Compressor\n", "T2s=T1*(pr_c^((gamma-1)/gamma));\n", "T2=T1+((T2s-T1)/n_c);\n", "w_c=cp_a*(T2-T1);\n", "\n", "// Gas Turbine\n", "n_g=(gamma_g-1)/gamma_g;\n", "cp_g=1.157; // Specific Heat of gas at Constant Pressure in kJ/(kgK)\n", "pr_t=p3/p4;\n", "T4s=T3/(pr_t^((gamma_g-1)/gamma_g));\n", "T4=T3-(n_t*(T3-T4s));\n", "w_t=cp_g*(T3-T4);\n", "w_net=w_t-w_c;\n", "w_g=n_m*n_G*w_net;\n", "\n", "// part(a) Determining Gas Flow Rate\n", "m_g=P/w_g;\n", "disp ('kg/s',m_g,'(a)Gas flow rate is')\n", "\n", "// part(b) Determining Fuel-Air Ratio\n", "F_A=((cp_g*T3)-(cp_a*T2))/((CV*n_B)-(cp_g*T3));\n", "disp(F_A,'(b)Fuel-Air Ratio is')\n", "\n", "// part(c) Air flow rate\n", "m_a=m_g/(1+F_A);\n", "disp('kg/s',m_a,'(c)Air flow rate is')\n", "\n", "// part(d) Determining thermal efficiency of the plant\n", "m_f=m_g-m_a;\n", "n_th=m_g*w_net/(m_f*CV);\n", "disp ('%',n_th*100,'(d)thermal efficiency of the plant is')\n", "\n", "// part(e) Determining Overall efficiency of the plant\n", "n_o=n_m*n_G*n_th;\n", "disp ('%',n_o*100,'(e)overall efficiency of the plant is')\n", "\n", "// part(f) Determining ideal Joule cycle efficiency\n", "n_Joule=1-(1/(pr_c^((gamma-1)/gamma)));\n", "disp ('%',n_Joule*100,'(f)efficiency of the ideal Joule cycle is')\n", "" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }