{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2: Properties of Pure Substances" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.1: saturated_water_is_vaporized.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//solution\n", "// initialization of variables\n", "m=10; // mass of saturated water in kg\n", " // All the necessary values are taken from table C.2\n", " // part (a)\n", " \n", "P=0.001; // Pressure in MPa\n", "vf=0.001; // specific volume of saturated liquid at 0.001 Mpa in Kg/m^3\n", "vg=129.2;// specific volume of saturated vapour at 0.001 Mpa in Kg/m^3\n", "deltaV=m*(vg-vf)//properties of pure substance \n", "printf('The Volume change at pressure '+string(P)+' MPa is %.0f m^3 \n',deltaV)\n", "\n", "// part (b) \n", "P=0.26; // Pressure in MPa\n", "vf=0.0011; // specific volume of saturated liquid at 0.26 MPa( it is same from at 0.2 and 0.3 MPa upto 4 decimals)\n", "vg=(P-0.2)*(0.6058-0.8857)/(0.3-0.2)+0.8857; // specific volume of saturated vapour by interpolation of Values at 0.2 MPa and 0.3 MPa\n", "deltaV=m*(vg-vf)\n", "printf(' The Volume change at pressure '+string(P)+' MPa is %.2f m^3 \n',deltaV)\n", "\n", "// part (c) \n", "P=10; // Pressure in MPa\n", "vf=0.00145; // specific volume of saturated liquid at 10 MPa\n", "vg=0.01803; //specific volume of saturated vapour at 10 MPa\n", "deltaV=m*(vg-vf)\n", "printf(' The Volume change at pressure '+string(P)+' MPa is %.4f m^3',deltaV)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2: volume_of_vapour.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//solution\n", "// initialization of variables\n", "m=4// mass of water in kg\n", "V=1 // volume in m^3\n", "T=150 // temperature of water in degree centigrade\n", "\n", "// TABLE C.1 is used for values in wet region\n", "// Part (a)\n", "P=475.8// pressure in KPa in wet region at temperature of 150 *C\n", "printf('The pressure is %.1f kPa \n',P)\n", "\n", "// Part (b)\n", "// first we determine the dryness fraction\n", "v=V/m// specific volume of water\n", "vg=0.3928 // specific volume of saturated vapour @150 degree celsius\n", "vf=0.00109 // specific volume of saturated liquid @150 degree celsius\n", "x=(v-vf)/(vg-vf); //dryness fraction\n", "mg=m*x; // mass of vapour\n", "printf(' The mass of vapour present is %.3f kg \n',mg)\n", "\n", "// Part(c) \n", "Vg=mg*vg;// volume of vapour\n", "printf(' The volume of vapour is %.3f m^3',Vg)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3: the_final_volume_of_mixture.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//solution\n", "// initialization of variables\n", "m=2 // mass of water in kg\n", "P=220 // pressure in KPa\n", "x=0.8 // quality of steam\n", "// Table C.2 is used for values\n", "vg=(P-200)*(0.6058-0.8857)/(300-200)+0.8857 // specific volume of saturated vapour @ given pressure by interpolating\n", "vf=0.0011 // specific volume of saturated liquid @ 220 KPa\n", "v=vf+x*(vg-vf)// property of pure substance\n", "V=m*v // total volume\n", "printf('The Total volume of the mixture is '+string(V)+' m^3')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4: constant_pressure_cylinder.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//solution\n", "// initialization of variables\n", "m=2 // mass of water in kg\n", "P=2.2 // pressure in Mpa\n", "T=800 // temperature in degree centigrade\n", " // Table C.3 is used for values\n", "v=0.2467+(P-2)*(0.1972-0.2467)/(2.5-2)// specific volue by interpolatin between 2 and 2.5 MPa\n", "V=m*v // final volume\n", "printf('The Final Volume is %.3f m^3',V)\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.5: mass_of_air_in_the_tire.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//solution\n", "// initialization of variables\n", "V=0.6 // volume of tyre in m^3\n", "Pgauge=200 // gauge pressure in KPa\n", "T=20+273 // temperature converted to kelvin\n", "Patm=100 // atmospheric pressure in KPa\n", "R=287 // gas constant in Nm/kg.K\n", "Pabs=(Pgauge+Patm)*1000 // calculating absolute pressue in Pa \n", "\n", "m=Pabs*V/(R*T)// mass from ideal gas equation\n", "printf('The Mass of air is %.2f Kg',m)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.6: the_van_der_Waals_equation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//solution\n", "// initialization of variables\n", "T=500+273 // temperature of steam in kelvin\n", "rho=24 // density in Kg/m^3\n", "R=0.462 // gas constant from Table B.2\n", "v=1/rho // specific volume and density relation\n", "// PART (a)\n", "P=rho*R*T // from Ideal gas equation\n", "printf('PART (a) The Pressure is '+string(P)+' KPa \n')\n", "// answer is approximated in textbook\n", "\n", "// PART (b)\n", "a=1.703 // van der Waal's constant a value from Table B.7\n", "b=0.00169 // van der Waal's constant b value from Table B.7\n", "P=(R*T/(v-b))-(a/v**2) // Pressure from van der Waal's equation\n", "printf(' PART (b) The Pressure is '+string(P)+' KPa \n')\n", "// answer is approximated in textbook\n", "\n", "// PART (c)\n", "a=43.9 // van der Waal's constant a value from Table B.7\n", "b=0.00117 // van der Waal's constant b value from Table B.7\n", "\n", "P=(R*T/(v-b))-(a/(v*(v+b)*sqrt(T)))// Redlich-Kwong equation\n", "printf(' PART (c) The Pressure is '+string(P)+' KPa \n')\n", "// answer is approximated in textbook\n", "\n", "// PART (d)\n", "Tcr=947.4 // compressibilty temperature from table B.3\n", "Pcr=22100 // compressibility pressure from table B.3\n", "\n", "TR=T/Tcr // reduced temperature\n", "PR=P/Pcr // reduced pressure\n", "Z=0.93 // from compressiblility chart\n", "P=Z*R*T/v // Pressure in KPa\n", "printf(' PART (d) The Pressure is '+string(P)+' KPa \n')\n", "// answer is approximated in textbook\n", "\n", "// PART (e)\n", "P=8000 // pressure from steam table @ 500*c and v= 0.0417 m^3\n", "printf(' PART (e) The Pressure is '+string(P)+' KPa \n')\n", "// answer is approximated in textbook" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }