{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 12: Dynamics of Machines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.10: Moment_of_inertia.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "ihp=25\n", "N=300//rpm\n", "Ks=2/100//given\n", "u=2.3//work done by gases during expansion is u(2.3) times that during compression\n", "E=ihp*33000/N//indicated work done per revolution\n", "E1=E*2//indicated work done per cycle\n", "We=E1/(1-1/u)//work done by gases during expansion\n", "AB=We*2/%pi//the maximum torque from fig 290\n", "AC=E/(2*%pi)//mean turning moment\n", "CB=AB-AC//maximum excess turning moment\n", "Ef=(CB/AB)^2*We//fluctuation of energy\n", "Ke=Ef/E\n", "w=%pi*N/30//angular speed\n", "g=32.2//ft/s^2\n", "moi=g*Ef/(w^2*Ks)//moment of inertia\n", "printf('Moment of inertia of the flywheel = %.f lb ft^2',moi)\n", "\n", "//answer is not EXACT due to the approximations in calculations done by the author of the book" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.11: Percentage_variation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "N=100//rpm\n", "ke=1.93//As per given figure\n", "l=15//1 inch of fig = 15 ton ft \n", "x=40//degrees; 1 inch = 40 degree\n", "I=150//ton ft^2\n", "w=%pi*N/30//angular speed\n", "E=l*x*%pi/180//energy\n", "Ef=E*ke//fluctuation energy\n", "Ks=Ef*g/(w^2*I)//from equation 12.14\n", "p=Ks*100/2//dummy variables\n", "q=p*2//dummy variables\n", "printf('The total fluctuation of speed is %.2f percent and the variation in speed is %.2f percent on either side of \n the mean speed',q,p)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.2: Torque_exerted.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "ne=31\n", "na=25\n", "nb=90\n", "nc=83\n", "Ta=10 //lbft\n", "//Ne-Nf/(Nc-Nf)=-83/31\n", "k=114/83//k=Nc/Nf As Ne = 0, on simplification we get Nc/Nf= 114/83\n", "j=-90/25//j=Na/Nb\n", "//Nc=Nb, Thus Na/Nc=-90/25\n", "//Na/Nf=(Na/Nc)*(Nc/Nf) ie Na/Nf=k*j\n", "//Tf*Nf=Ta*Na\n", "Tf=Ta*k*j\n", "printf('\nTorque exerted on driven shaft = %.1f lb.ft\n',Tf)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.3: Torque_exerted_on_crankshaft.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "D=9//in\n", "stroke=24//in\n", "d=2//in\n", "l=60//in\n", "CP=l\n", "N=120\n", "theta=40//degrees\n", "x=theta*%pi/180\n", "P1=160//lb/in^2\n", "P2=32//lb/in^2\n", "OC=stroke/2\n", "F=%pi*(D/2)^2*P1-%pi*(D/2)^2*P2+%pi*(d/2)^2*P2\n", "//Ft*Vc=F*Vp; Where Vc and Vp are velocities of crank and pin respectively\n", "//Vp/Vc=IP/IC=OM/OC - From similar triangles ; fig 274\n", "n=CP/OC\n", "OM=OC*(sin(x) + (sin(2*x)/(2*n)))//from 3.11\n", "T=F*OM/12//torque exerted on crankshaft\n", "Torque=floor(T)\n", "printf('The torque exerted on crankshaft= F*OM = %.f lb ft',Torque)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.4: Total_force.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "AB=12.5//in\n", "IB=10.15//in\n", "IA=10.75//in\n", "IX=2.92//in\n", "IY=5.5//in\n", "w=3//lb\n", "Fi=5//lb\n", "Fa1=9//lb\n", "Fb1=(Fa1*IA-w*IY-Fi*IX)/IB\n", "//From the polygon of forces\n", "Fa2=7.66//lb\n", "Fb2=3.0//lb\n", "Fa=(Fa1^2+Fa2^2)^(1/2)\n", "Fb=(Fb1^2+Fb2^2)^(1/2)\n", "printf('\nThe total force applied to the link AB at the pin A = Fa = %.2f lb\nThe total force applied to the link AB at the pin B = Fb = %.2f lb\n',Fa,Fb)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.5: Inertia_torque.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "CP=60//in\n", "l=CP/12\n", "a=41\n", "cg=19\n", "g=32.2//ft/s^2\n", "m1=580//lb\n", "Mr=500//lb\n", "n=5//from example 12.3\n", "x=40*%pi/180\n", "N=120\n", "r=1//ft\n", "k=25\n", "w=N*%pi/30\n", "Rm=m1+(cg/CP)*Mr\n", "fp=w^2*r*(cos(x)+cos(2*x)/n)\n", "Fp=-Rm*fp/g\n", "OM=0.7413//ft -from example 12.3\n", "Tp=Fp*OM//from 12.6\n", "L=a+k^2/a//length for simple equivalent pendulum\n", "L1=L/12\n", "Tc=-Mr*(a/12)*(l-L1)*w^2*sin(2*x)/(g*2*n^2)//from 12.10\n", "Tw=-Mr*a*cos(x)/(n*12)\n", "T=Tp+Tc+Tw\n", "printf('\nTp= %.f lbft\nTc = %.1f lbft\nTw = %.1f lbft\nTotal torque exerted on the crankshaft due to the inertia of the moving parts = Tp+Tc+tw = %.1f lbft',Tp,Tc,Tw,T)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.6: Torque_exerted.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "AB=2.5//in\n", "BC=7//in\n", "CD=4.5//in\n", "AD=8//in\n", "ED=2.3//from figure\n", "N=180\n", "w=N*%pi/30\n", "m=3//lb\n", "k=3.5//radius of gyration\n", "g=32.2//ft/s^2\n", "QT=1.35//inches from figure\n", "alpha=w^2*(QT/CD)\n", "Torque=m*(k/12)^2*alpha/g\n", "Torque1=Torque*12\n", "Tadd=m*ED//additional torque\n", "Tc=Tadd+Torque1//total torque\n", "Fc1=Tc/CD\n", "//link BC\n", "M=5//lb\n", "gA=1.8//in\n", "fg=w^2*(gA/12)\n", "F=M*fg/g\n", "OaG=5.6//in\n", "Kg=2.9//in\n", "GZ=Kg^2/OaG\n", "//scaled from figure\n", "IB=9//in\n", "IC=5.8//in\n", "IX=2.49//in\n", "IY=1.93//in\n", "Fb1=(Fc1*IC+F*IX+M*IY)/IB\n", "Tor=Fb1*AB\n", "//from force polygon\n", "Fc2=1//lb\n", "Fb2=15.2//lb\n", "Fb=(Fb1^2+Fb2^2)^(1/2)\n", "Fc=(Fc1^2+Fc2^2)^(1/2)\n", "printf('\nThe torque which must be exerted on AB in order to overcome the inertia of the links = Fb1*AB = %.1f lb.in\nThe total force applied to the link BC \nAt pin C = %.2f lb\nAt pin B = %.1f lb\n',Tor,Fc,Fb)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.7: Actual_speed.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "N=210//rpm\n", "w=N*%pi/30\n", "F=50\n", "p1=F*120/(N*2)//N*p=F*120\n", "p2=floor(p1)//no of poles must be a whole number ; P2=P/2\n", "p=2*p2\n", "N1=F*120/p\n", "n=3//no of impulse per second\n", "Ks=n/(6*p)//equation 12.13\n", "printf('\nKs = %.4f\n\nActual speed = %.1f rpm\nNumber of poles = %.f',Ks,N1,p)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.8: Weight_of_fly_wheel.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "N=120//rpm\n", "k=3.5//ft\n", "Ef=2500//ft lb\n", "Ks=.01\n", "g=32.2//ft/s^2\n", "w=%pi*N/30//angular velocity\n", "W=g*Ef/(w^2*k^2*Ks*2240)//Weight of flying wheel\n", "printf('\nWeight of flying wheel, W = %.2f tons',W)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.9: Fluctuation_of_speed.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "clc\n", "//given\n", "N=270//rpm\n", "ihp=35.8\n", "k=2.25//ft\n", "g=32.2//ft/s^2\n", "ke=1.93//from table on p 440\n", "E=ihp*33000/N\n", "Ef=ke*E\n", "w=%pi*N/30\n", "W=1000//lb\n", "MOI=2*W*k^2//moment of inertia of both wheel\n", "ks=Ef*g/(MOI*w^2)//formula for ks\n", "p=ks/2\n", "printf('The fluctuation speed is therefore %.4f or %.3f on either side of the mean speed',ks,p)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }