{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6: Digital Design" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.10: calculating_radiation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "v=5; //in volt\n", "sp=2*10^-3; //spacing in m\n", "d=1; //distance in metre\n", "hw=7.5; //half wavelength in metre\n", "f=10.6*10^6; //frequency in Hz\n", "a=0.3; //area in centimetre square\n", "r=316; //standard model radiation in (V*10^-6)/metre\n", "n=316*(500*a*v)/(89*3.3); //calculating radiation\n", "disp(n,'Radiation in (V*10^-6)/metre = '); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.11: calculating_H_field.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "mo=1/(4*(%pi)*10^-7); //constant\n", "a=0.01; //area in m square\n", "v=0.2; //in volt\n", "f=2*10^6; //frequency in Hz\n", "vp=v*sqrt(2); //calculating peak voltage\n", "disp(vp,'Peak voltage in volt = '); //displaying result\n", "b=vp/a; //change in B field\n", "disp(b,'Change in B field in Tesla/sec = '); //displaying result\n", "h=b*mo; //calculating H field\n", "disp(h,'H field is changing in A/m per sec'); //displaying result\n", "disp('At 2 MHz the H-field peak is 1.79 A/m.'); //displaying result\n", "disp('This is 1.26 A/m rms.'); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.12: calculating_WCC.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "dia=1; //diameter in cm\n", "f=300*10^6; //frequency in Hz\n", "i=5; //current in Ampere\n", "dis=10; //in cm\n", "dim=0.56; //aperture dimension in cm\n", "r=(dia*10^-2)/2; //calculating radius in metre\n", "h=(0.25)/(2*(%pi)*r); //H field\n", "disp(h,'H field in A/metre = '); //displaying result\n", "disp('For a plane wave the E field is 377 H = 3000V/m'); //displaying\n", "att=75/dim; //attenuation\n", "disp(att,'Attenuation = '); //displaying result\n", "disp('Thus, the field is 22.4 V/metre'); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.13: finding_the_mode_of_coupling.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "ap=2; //aperture length in cm\n", "f=(2/75)*3000; //field\n", "disp(f,'Field is coupled with in V/metre = '); //displaying result\n", "disp('For an area of 2 cm square,the voltage coupled is 2.13 V.'); //displaying result \n", "disp('This can damage a circuit.'); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.14: determining_the_type_of_filter.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "disp('The filter must attenuate the signal by a factor of 10.'); //displaying result\n", "f=300*10^6; //frequency in Hz\n", "disp(' If R = 100 Ohm ,then the reactance of the capacitor should be about 10 Ohm.'); //displaying result\n", "c=1/(2*(%pi)*f*10); //calculating capacitance\n", "disp(c,'At 300 MHz, this is in Farad = '); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.15: calculating_common_mode_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "i=54946; //current in Ampere\n", "d=1; //distance in ft\n", "r=0.33; //in metre\n", "f=425.89; //frequency in Hz\n", "h=i/(2*(%pi)*r); //calculating H field\n", "disp(h,'H field in A/metre = '); //displaying result\n", "mo=(4*(%pi)*10^-7); //constant\n", "b=mo*h; //calculating B field\n", "disp(b,'B field in Tesla = '); //displaying result\n", "area=0.02; //area in metre square\n", "flux=b*area; //calculatin flux\n", "disp(flux,'Flux in Wb = '); //displaying result\n", "v=(2*(%pi)*f); //calculating voltage\n", "disp(v,'Voltage in volt = '); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.16: observing_output.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "disp('The reactance at 640 kHz is 75.4 Ohm.'); //displaying result\n", "disp('For 20,000 A, the voltage drop is 1.5*10^6 Volt.'); //displaying result\n", "disp('The breakdown voltage for 6 in. is 300,000 V.Lightning will jump through the concrete.'); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.1: calculating_dielectric_constant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "c=500*10^-12; //capacitance in Farad\n", "d=0.01; //spacing in inch\n", "eo=8.854*10^-12; //dielectric constant of air in Farad per metre\n", "er=7.1*10^-12; //dielectric constant of material\n", "area=0.02*d; //in metre square\n", "C=697*er; //calculating capacitance\n", "disp(C,'Capacitance in Farad = '); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.2: calculating_output.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "r=100; //resistance in Ohm\n", "v=10; //in volt\n", "d=10; //distance in feet\n", "c=10*10^-6; //capacitor in Farad\n", "i=v/r; //current\n", "disp(i,'The wave travels the length of the line in 20 ns. The current that flows in the capacitor is the short-circuit current = '); //displaying result\n", "ch=40*10^-9*0.1; //charge\n", "disp(ch,'The charge that flows in 40 ns = '); //displaying result\n", "v1=ch/c; //voltage\n", "disp(v1,'Voltage in a 10*10^-6 Farad Capacitor = '); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3: calculating_size.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "i=20*10^-3; //current\n", "vd=1; //voltage drop\n", "t=10^-3; //time in sec\n", "q=i*t; //charge\n", "c=q/vd; //capacitance\n", "disp(c,'Capacitance in Farad = '); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.4: calculating_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "c=15*10^-12; //capacitance in F/ft\n", "v=10; //in volt\n", "f=10*10^6; //frequency in Hz\n", "t=10*10^-9; //time\n", "imp=100; //impedance in Ohm\n", "l=3; //length in metre\n", "i=c*10^9; //current\n", "disp(i,'Current in Ampere = '); //displaying result\n", "disp('This is 1.5 V in 100 .'); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.5: calculating_radiation_level.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "v=10; //in volt\n", "i=20*10^-3; //current in Ampere\n", "t=10*10^-9; //time in sec\n", "s=0.05; //spacing in inch\n", "l=50; //length in cm\n", "disp('The radiation using the standard model is 316*10^-6V.'); //displaying result\n", "f=1/((%pi)*t); //frequency\n", "disp(f,'Frequency in Hz = '); //displaying result\n", "rad=(316*57*0.6*10)/(3.33*9.9); //radiation\n", "disp(rad,'radiation level at 10 metre in (V*10^-6 metre) = '); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.6: calculating_radiation_level.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "v=10; //in volt\n", "i=20*10^-3; //current in Ampere\n", "t=10*10^-9; //time in sec\n", "s=0.05; //spacing in inch\n", "l=50; //length in cm\n", "disp('The radiation using the standard model is 316*10^-6V.'); //displaying result\n", "f=1/((%pi)*t); //frequency\n", "disp(f,'Frequency in Hz = '); //displaying result\n", "rad=(316*57*0.6*10)/(3.33*9.9); //radiation\n", "disp(rad,'radiation level at 10 metre in (V*10^-6 metre) = '); //displaying result\n", "w=364; //ratio of areas\n", "disp(w,'If the adjacent conductor is 0.05 in. away, the field is reduced by the ratio of areas in (10^-6*V/metre)= '); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.7: calculating_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "imp=0.2; //transfer impedance in Ohm/metre\n", "f=50*10^6; //frequency in Hz\n", "i=10*10^-3; //current in Ampere\n", "l=2; //length in metre\n", "disp('The voltage coupled to the cable is 0.02 V/m.'); //displaying\n", "disp(' This is 0.04 V in 2 m.'); //displaying result\n", "disp('Half of the energy goes in each direction.'); //displaying result\n", "disp('At the unterminated end, the voltage doubles.'); //displaying result\n", "disp('Thus, The result is 0.04 V.'); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.8: calculating_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "hw=7.5; //half wavelength in metre\n", "f=20*10^6; //frequency in Hz\n", "a=0.03; //area in metre square\n", "v=hw*a; //calculating voltage\n", "disp(v,'Voltage in volt = '); //displaying result" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.9: calculating_WCC_radiation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "v=5; //in volt\n", "sp=2*10^-3; //spacing in m\n", "d=1; //distance in metre\n", "hw=7.5; //half wavelength in metre\n", "f=10.6*10^6; //frequency in Hz\n", "a=0.8; //area in centimetre square\n", "r=316; //standard model radiation in (V*10^-6)/metre\n", "n=316*(125*a*v*d)/(89*3.3); //calculating radiation\n", "disp(n,'Radiation in (V*10^-6)/metre = '); //displaying result" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }