{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4: Permanent Magnet Generators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.1: No_Load_Speed.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 4.1 \n", "\n", "clear; clc; close;\n", "format('v',7);\n", "\n", "// Given data\n", "kf=0.12; // in Nm/A\n", "V=48;//in volt\n", "\n", "//Calculations\n", "omega_mo=V/kf//in radian/sec\n", "No=omega_mo*60/(2*%pi)//in rpm\n", "disp(floor(No),'No load speed in rpm = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2: No_Load_Speed.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 4.2\n", "\n", "clear; clc; close;\n", "format('v',7);\n", "\n", "// Given data\n", "Tst=1; // in N-m\n", "Ist=5;//in Ampere\n", "V=28;//in volt\n", "\n", "//Calculations\n", "kf=Tst/Ist;//in Nm/A\n", "omega_m=V/kf//in radian/sec\n", "No=omega_m*60/(2*%pi)//in rpm\n", "disp(No,'No load speed in rpm = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.3: Speed_of_Motor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 4.3\n", "\n", "clear; clc; close;\n", "format('v',6);\n", "\n", "// Given data\n", "Ra=0.8;//in Ω\n", "Vdd=2;//in volt\n", "V=28;//in volt\n", "T1=0.3; // in N-m\n", "Tst=1; // in N-m\n", "Ist=5;//in Ampere\n", "\n", "//Calculations\n", "//We know : Tst = fi_1*Ist and T1 = IL*fi_2\n", "//Deviding these two eqn we have\n", "IL=(T1/Tst)*Ist/0.8;//in Ampere\n", "Ebo=V;//in volt\n", "NLbyNo=(V-IL*Ra-Vdd)/(0.8*Ebo);// temporary calculation for NL\n", "No=1337;//in rpm\n", "NL=NLbyNo*No;//in rpm\n", "disp(NL,'Speed of motor in rpm =');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.4: No_Load_Speed.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 4.4\n", "\n", "clear; clc; close;\n", "format('v',7);\n", "\n", "// Given data\n", "ke=0.12;//in Nm/A\n", "V=48;//in volt\n", "Rph=0.15;//in Ω\n", "Vdd=2;//in volt\n", "\n", "//Calculations\n", "omega_mo=V/ke//in radian/sec\n", "No=omega_mo*60/(2*%pi)//in rpm\n", "disp(No,'No load speed in rpm = ');\n", "\n", "Ist=(V-Vdd)/(2*Rph);//in Ampere\n", "Tst=ke*Ist; // in N-m\n", "disp(Tst,'Starting Torque in N-m = ');\n", "//Note : answer is wrong in the book." ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.5: Speed_of_Motor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 4.5\n", "\n", "clear; clc; close;\n", "format('v',7);\n", "\n", "// Given data\n", "Vs=120;//in volt\n", "V=60;//in volt\n", "Ra=2.5;//in Ω\n", "T=0.5; // in N-m\n", "N=6000//in rpm\n", "\n", "//Calculations\n", "\n", "omega_mo=2*%pi*N/60//in radian/sec\n", "ke=Vs/omega_mo;//in Nm/A\n", "Ia=T/ke;//in Ampere\n", "E=V-Ia*Ra;//in Volt\n", "omega_m=E/ke//in radian/sec\n", "N=omega_m/(2*%pi/60);//in rpm\n", "disp(N,'Speed in rpm = ');\n", "//Note : answer is wrong in the book because calculation is not accurate. ." ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.6: Calculate_Torque.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 4.6\n", "\n", "clear; clc; close;\n", "format('v',9);\n", "\n", "// Given data\n", "lm=6*10^-3;//magnet length in m\n", "g=2*10^-3;//in m\n", "Tph=200;//turns\n", "Br=0.3;//in T\n", "l=50*10^-3;//in m\n", "n=25*10^-3;//in m\n", "I=10*10^-3;//in A\n", "N=200;//turns\n", "mo=4*%pi*10^-7;//permittivity\n", "//Calculations\n", "Am=(2/3)*%pi*[n-g-lm/2]*l;//in m^2\n", "Ag=[(2/3)*%pi*(n-g/2)+2*g]*(l+2*g);//in m^2 \n", "Cfi=Am/Ag;//unitless\n", "//For normal BLDG motor, HC=606 KA/M\n", "HC=606;//in KA/M\n", "Hm=N*I/l;//KA/M\n", "Bm=Br*[1-Hm/HC];//in T\n", "Mrec=(Br-Bm)*10^-3/(4*%pi*10^-7*40);\n", "Pmo=mo*Mrec*Am/lm;//in m-Wb/AT\n", "Pmo=Pmo*10^-3;//in Wb/AT\n", "Kc=1.05;//given constant\n", "g_dash=Kc*g;//in m\n", "Rg=g_dash/mo/Am;\n", "Bg=Cfi*Br/(1+Pmo*Rg);//in T\n", "Torque=2*Tph*Bg*l*n*I;//in N-m\n", "disp(Torque,'Torque per phase in N-m : ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.7: Frequency_Phase_and_Line_EMF.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 4.7\n", "\n", "clear; clc; close;\n", "format('v',6);\n", "\n", "// Given data\n", "P=16;//no.of poles\n", "slots=144;//no. of slotes\n", "conductors=10;//per slot\n", "fi=0.03;//in mb/pole\n", "N=375//in rpm\n", "\n", "//Calculations\n", "f=P*N/120;//in Hz\n", "disp(f,'Frequency in Hz = ');\n", "kc=1;//for full pitcheed coil\n", "n=slots/P;//slots per pole\n", "Beta=180/n;//in degree\n", "m=n/3;//slots per pole per phase\n", "kd=sind(3*Beta/2)/[m*sind(Beta/2)];//Distribution factor\n", "Z=conductors*slots;//total no. of conductors\n", "Zph=Z/3;// no. of armature per phase conductions\n", "Tph=Zph/2;//turns/ph\n", "Eph=4.44*kc*kd*f*fi*Tph;//in volts\n", "disp(Eph,'Phase Voltage in volts = ');\n", "VL=sqrt(3)*Eph;//in volt\n", "disp(VL,'Line Voltage in volts = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.8: Open_Circuit_Phase_EMF.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 4.8\n", "\n", "clear; clc; close;\n", "format('v',6);\n", "\n", "// Given data\n", "P=4;//no.of poles\n", "phase=3;//no. of phase\n", "slots=36;//no. of stator slotes\n", "turns=20;//turns per coil\n", "conductors=10;//per slot\n", "fi_m=1.8;//in m wb\n", "N=3000//in rpm\n", "\n", "//Calculations\n", "f=P*N/120;//in Hz\n", "Tph=turns*phase*P;//no. of turns per phase\n", "m=slots/(phase*P);//slots per pole per phase\n", "n=slots/P;//slots per pole\n", "Beta=180/n;//in degree\n", "kd1=sind(3*Beta/2)/[m*sind(Beta/2)];//Distribution factor\n", "alfa=2*Beta;//in degree(Short Pitched by 2slots)\n", "kp1=cosd(alfa/2);//unitless\n", "ks1=1;//coefficient\n", "kn1=kd1*kp1*ks1;//winding factor\n", "Eq=4.44*f*fi_m*10^-3*kn1*Tph;//in volts\n", "disp(Eq,'Open Circuit Phase emf in volts = ');" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }