{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 9: Semiconductors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.10: Conductivity_and_Position_of_Ef_above_the_intrinsic_level.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.10: Page-9.31 ; (2004)\n", "clc;clear;\n", "ni = 1.5e+16; // Intrinsic Carrier concentration at room temperature\n", "mu_e = 0.135; // Mobility of electron; m^2V^-1s^-1\n", "e = 1.6e-19; // Electronic charge, C\n", "Nd = 1e+23; // Impurity atoms , per metrecube\n", "T = 300; // Temperature, Kelvin \n", "k = 1.38e-23; // Boltzman constant,joule per kelvin\n", "mu_h = 0.048; // Mobility of holes, m^2V^-1s^-1\n", "sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per meter\n", "p = ni^2/Nd; // Hole concentration, per metrecube\n", "sigma_ex = Nd*e*mu_e; // Conductivity with donor type impurities, mho per meter\n", "E_F =(3/(4*e))*k*T*(log(0.135/0.048)); // Position of fermi level above the intrinsic level, eV \n", "// mu is inversely propotional to mass \n", "printf('\nConductivity of silicon = %3.2e mho per meter', sigma);\n", "printf('\nHole concentration = %4.2e per metrecube', p);\n", "printf('\nConductivity with donor type impurities = %4.2e mho per meter', sigma_ex);\n", "printf('\nPosition of fermi level above the intrinsic level = %4.2f eV', E_F);\n", "\n", "//Results\n", "// Conductivity of silicon = 4.39e-04 mho per meter\n", "// Hole concentration = 2.25e+09 per metrecube\n", "// Conductivity with donor type impurities = 2.16e+03 mho per meter\n", "// Position of fermi level above the intrinsic level = 0.02 eV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.11: Intrinsic_carrier_concentration_and_conductivity_in_germanium.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.11: Page-9.32 ; (2004)\n", "clc;clear;\n", "e = 1.6e-19; // Electronic charge, C\n", "Eg = 0.7*e; // Band gap energy, joules\n", "mu_e = 0.4; // Mobility of electron; m^2V^-1s^-1\n", "mu_h = 0.2; // Mobility of holes, m^2V^-1s^-1\n", "m = 9.1e-31; // Mass of electron, kg\n", "h = 6.63e-34; // Plancks Constant, Js\n", "T = 300; // Temperature, Kelvin \n", "k = 1.38e-23; // Boltzman constant,joule per kelvin\n", "C = 2*(2*%pi*T*m*k/h^2)^(3/2); // Constant parameter\n", "ni = C*exp((-Eg)/(2*k*T)); // Carrier concentration at room temperature\n", "sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per meter\n", "printf('\nCarrier concentration at room temperature = %4.2e per metrecube', ni);\n", "printf('\nConductivity of silicon = %3.2f mho per meter', sigma);\n", "\n", "\n", "//Results\n", "// Carrier concentration at room temperature = 3.34e+19 per metrecube\n", "// Conductivity of silicon = 3.20 mho per meter " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.12: Forbidden_energy_band_gap.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.12: Page-9.32 ; (2004)\n", "clc;clear;\n", "e = 1.6e-19; // Electronic charge, C\n", "mu_e = 0.36; // Mobility of electron; m^2V^-1s^-1\n", "mu_h = 0.17; // Mobility of holes, m^2V^-1s^-1\n", "rho = 2.12; // Resistivity of sample, ohm metre \n", "sigma = 1/rho; // Conductivity of sample, mho per meter\n", "m = 9.1e-31; // Mass of electron, kg\n", "h = 6.63e-34; // Plancks Constant, Js\n", "T = 300; // Temperature, Kelvin \n", "k = 1.38e-23; // Boltzman constant,joule per kelvin\n", "// But ni = C*exp((-Eg)/(2*k*T)); // Carrier concentration at room temperature, therefore\n", "C = 2*(2*%pi*T*m*k/h^2)^(3/2); // Constant parameter\n", "ni = sigma/(e*(mu_e+mu_h)); // Carrier concentration, per metercube\n", "b = C/ni; // Ratio for simplicity\n", "Eg = 2/e*k*T*log(b); // Band gap energy, joules\n", "\n", "printf('\nBand gap energy = %5.4f eV', Eg);\n", "\n", "//Result\n", "// Band gap energy= 0.7927 eV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.13: Hall_Voltage_of_a_semiconductor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.13: Page-9.45 ; (2004)\n", "clc;clear;\n", "RH = 3.66e-4; // Hall coefficent, meter cube/C\n", "t = 1e-03; // thickness of the specimen, m\n", "Bz = 0.5; // Magnetic flux density, wb per meter square\n", "Ix = 1e-2; // Current , A\n", "VH = RH*Ix*Bz/t; // Voltage across specimen, volt\n", "printf('\nVoltage across specimen = %3.2f millivolt', VH/1e-3);\n", "\n", "// Result\n", "// Voltage across specimen = 1.83 millivolt" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.14: Hall_coefficient_of_a_semiconductor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.14: Hall coefficent of a semiconductor : Page-9.46 ; (2004)\n", "clc;clear;\n", "Vy = 37e-06; // Voltage across specimen, volt\n", "t = 1e-03; // thickness of the specimen, m\n", "Bz = 0.5; // Magnetic flux density, wb per meter square\n", "Ix = 20e-3; // Current , A\n", "RH = Vy*t/(Ix*Bz); // Hall coefficent, meter cube/C\n", "printf('\nHall coefficent, meter cube/C = %3.1e meter cube/C', RH);\n", "\n", "// Result\n", "// Hall coefficent, meter cube/C = 3.7e-06 meter cube/C " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.15: Mobility_density_and_nature_of_semiconductor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.15: Page-9.46 ; (2004)\n", "clc;clear;\n", "e = 1.6e-19; // Electronic charge, C\n", "RH = -7.35e-5; // Hall coefficent, meter cube/C\n", "sigma = 200; // Conductivity of the Si specimen, per ohm per metre\n", "n = -1/(RH*e); // Electron density, per metre cube\n", "mu = sigma/(n*e); // Mobility of the charge carriers, square meter per voly per sec\n", "printf('\nElectron density = %3.3e per metre cube', n);\n", "printf('\nMobility = %3.3f square meter per volt per sec', mu);\n", "printf('\nAs the RH is negative, so specimen is n-type');\n", "\n", "//Result\n", "// Electron density = 8.503e+22 per metre cube\n", "// Mobility = 0.015 square meter per volt per sec\n", "// As the RH is negative, so specimen is n-type " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.16: Hall_Voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.16: Page-9.47 ; (2004)\n", "clc;clear;\n", "e = 1.6e-19; // Electronic charge, C\n", "B = 1.5; // Magnetic field, tesla\n", "I = 50; // Current, ampere\n", "n = 8.4e+28; // Electron density, per metre cube\n", "t = 0.5e-2; // thickness of slab, metre\n", "RH = 1/(n*e); // Hall coefficent\n", "V_H = RH*I*B/t; // Hall voltage, volt \n", "printf('\nHall Voltage = %3.3f micro volt', V_H/1e-6);\n", "\n", "//Result\n", "// Hall Voltage = 1.116 micro volt " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.17: Mobility_and_number_of_Charge_carrier.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.17: Mobility and no of Charge carrier : Page-9.48 ; (2004)\n", "clc;clear;\n", "RH = 3.66e-4; // Hall Coefficient, metrcube/C\n", "e = 1.6e-19; // Electronic charge, C\n", "rho = 8.93e-3; // Resistivity of sample, ohm meter \n", "n = 1/(RH*e); // Number of charge carrier, per metre cube\n", "mu_e = RH/rho; // Mobility of electron, m^2 per volt per sec\n", "printf('\nNumber of charge carrier = %3.3e per metre cube', n);\n", "printf('\nMobility of electron = %4.5f squaremetre per volt per sec', mu_e);\n", "\n", "//Results\n", "// Number of charge carrier = 1.708e+22 per metre cube\n", "// Mobility of electron = 0.04099 m^2 per volt per sec " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1: Resistivity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.1: Page-9.24 ; (2004)\n", "clc;clear;\n", "ni = 2.37e+19; // Carrier concentration at room temperature\n", "mu_e = 0.38; // mobility of electron; m^2V^-1s^-1\n", "e = 1.6e-19; // electronic charge, C\n", "mu_h = 0.18; // mobility of holes; m^2V^-1s^-1\n", "sigma = ni*e*(mu_e+mu_h); // conductivity, mho.m^-1\n", "rho = 1/sigma; // Resistivity in Ge, ohm.m\n", "printf('\nConductivity in Ge = %4.2f mho.per m', sigma);\n", "printf('\nResistivity in Ge = %5.3f ohm.m', rho);\n", "\n", "//Results\n", "// Conductivity in Ge = 2.12 mho.per m\n", "// Resistivity in Ge = 0.471 ohm.m " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2: Determination_of_Fermi_level.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2: Page-9.24 (2004)\n", "clc;clear;\n", "Eg = 1.12; // Bandgap of silicon, eV\n", "me = 0.12*9.1e-031; // Effective Mass of the electron, kg\n", "e = 1.6e-19; // Electronic charge, C\n", "mh = 0.28*9.1e-031; // Effective Mass of the hole, kg\n", "k = 1.38e-23; // Boltzman constant, joule per kelvin\n", "T = 300; // temperature, K\n", "EF = (Eg/2)+3/4*k*T*(log(2.333))/e; // EF = E(Eg/2)+3/4*k*T*(log(2.333))/e; Formula\n", "\n", "printf('\nThe position of Fermi Level = %4.3f eV', EF);\n", "\n", "// Result\n", "// The position of Fermi Level = 0.576 eV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.3: Number_of_intrinsic_carriers_at_300K.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.3: Number of intrinsic carriers at 300K: Page-9.26 ; (2004)\n", "clc;clear;\n", "e = 1.6e-19; // Electronic charge, C\n", "m = 9.1e-31; // Mass of electron, kg\n", "T = 300; // Room temperature, K\n", "k = 1.38e-23; // Boltzmann Constant, joule per kelvin \n", "Eg = 0.7*e; // Energy band gap of silicon, J\n", "h = 6.626e-34; // Plancks Constant, Js\n", "C = 2*(2*%pi*m*k/h^2)^(3/2); // A constant \n", "ni = C*T^(3/2)*exp((-Eg)/(2*k*T)); // formula for carrier concentration at room temperature\n", "printf('\nNumber of intrinsic carriers at 300K = %3.1e per cubemetre ', ni);\n", "\n", "//Results\n", "// Number of intrinsic carriers at 300K = 3.3e+19 per cubemetre " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.4: Resistivity_of_Ge_sample.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.4: Page-9.26 ; (2004)\n", "clc;clear;\n", "ni = 2.4e+19; // Carrier concentration at room temperature\n", "mu_e = 0.39; // Mobility of electron; m^2V^-1s^-1\n", "e = 1.6e-19; // Electronic charge, C\n", "mu_h = 0.19; // Mobility of holes, m^2V^-1s^-1\n", "sigma = ni*e*(mu_e+mu_h); // Conductivity, mho.m^-1\n", "rho = 1/sigma; // Resistivity in Ge, ohm.m\n", "printf('\nConductivity in Ge = %4.4f mho.per m', sigma);\n", "printf('\nResistivity in Ge = %5.3f ohm.m', rho);\n", "\n", "\n", "//Results\n", "// Conductivity in Ge = 2.2272 mho.per m\n", "// Resistivity in Ge = 0.449 ohm.m " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.5: Resistance_of_Ge_rod.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.5: Page-9.26 ; (2004)\n", "clc;clear;\n", "ni = 2.5e+19; // Carrier concentration at room temperature\n", "mu_e = 0.39; // Mobility of electron; m^2V^-1s^-1\n", "e = 1.6e-19; // Electronic charge, C\n", "l = 1e-2; // length of Ge rod, m\n", "w = 1e-3; // width of Ge rod,m\n", "t = 1e-3; // thickness of Ge rod, m\n", "A = w*t; // Area of Ge rod, meter square \n", "mu_h = 0.19; // Mobility of holes, m^2V^-1s^-1\n", "sigma = ni*e*(mu_e+mu_h); // Conductivity, mho.m^-1\n", "R = l/(sigma*A); // Resistivity in Ge, ohm.m\n", "printf('\nResistance of Ge rod = %4.2e ohm', R);\n", "\n", "//Results\n", "// Resistance of Ge rod = 4.31e+03 ohm " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.6: Conductivity_of_Si.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.6: Page-9.27 ; (2004)\n", "clc;clear;\n", "mu_e = 0.48; // Mobility of electron; m^2V^-1s^-1\n", "e = 1.6e-19; // Electronic charge, C\n", "m = 9.1e-31; // Mass of electron, kg\n", "mu_h = 0.013; // Mobility of holes, m^2V^-1s^-1\n", "T = 300; // Room temperature, K\n", "k = 1.38e-23; // Boltzmann Constant, joule per kelvin \n", "Eg = 1.1*e; // Energy band gap of silicon, J\n", "h = 6.626e-34; // Plancks Constant, Js\n", "C = 2*(2*%pi*m*k/h^2)^(3/2); // A constant \n", "ni = C*T^(3/2)*exp((-Eg)/(2*k*T)); // formula for carrier concentration at room temperature\n", "sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per metre\n", "\n", "printf('\nConductivity = %3.1e mho per metre ', sigma);\n", "\n", "//Results\n", "// Conductivity = 1.2e-03 mho per metre " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.7: Electron_and_hole_concentration_in_silicon.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.7: Page-9.27 ; (2004)\n", "clc;clear;\n", "Na = 5e+23; // Concentration of boron atoms, per metrecube\n", "Nd = 3e+23; // Concentration of arsenic atoms, per metrecube\n", "p = Na-Nd; // Hole concentration, per metrecube\n", "ni = 2e+16; // Intrinsic concentration ,per metrecube\n", "n = ni^2/p; // Electron concentration, per metrecube\n", "\n", "printf('\nHole concentration = %3.1e per metrecube ', p);\n", "printf('\nElectron concentration = %3.1e per metrecube ', n);\n", "\n", "//Results\n", "// Hole concentration = 2.0e+23 per metrecube \n", "// Electron concentration = 2.0e+09 per metrecube " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.8: Temperature_that_shift_the_fermi_level.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.8: Page-9.28 (2004)\n", "clc;clear;\n", "Eg = 1; // Bandgap of silicon, eV\n", "e = 1.6e-19; // Electronic charge, C\n", "k = 1.38e-23; // Boltzman constant,joule per kelvin\n", "E_F = (0.6-0.5)*e; // Fermi energy, joules\n", "// E_F =((Ev+Ec)/2)+3/4*k*T1*(log(4)); // Ev & Ec= valance and conduction band energies (formula) \n", "T = 4*E_F/(3*k*log(4)); //Temperature that shift the fermi level, K\n", "\n", "printf('\nTemperature that shift the fermi level = %4.3d K', T);\n", "\n", "// Result\n", "// Temperature that shift the fermi level = 1115 K " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.9: Conductivity_of_intrinsic_silicon_at_300_K.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.9: Page-9.29 ; (2004)\n", "clc;clear;\n", "ni = 1.5e+16; // Intrinsic Carrier concentration at room temperature\n", "mu_e = 0.13; // Mobility of electron; m^2V^-1s^-1\n", "e = 1.6e-19; // Electronic charge, C\n", "Nd = 4.99e+20; // Impurity atoms , per metrecube\n", "mu_h = 0.05; // Mobility of holes, m^2V^-1s^-1\n", "sigma = ni*e*(mu_e+mu_h); // Conductivity, mho per meter\n", "sigma_d = Nd*e*mu_e; // Conductivity with donor type impurities, mho per meter\n", "sigma_a = Nd*e*mu_h; // Conductivity with acceptor type impurities, mho per meter\n", "printf('\nConductivity of silicon = %3.2e mho per meter', sigma);\n", "printf('\nConductivity with donor type impurities = %4.2f mho per meter', sigma_d);\n", "printf('\nConductivity with acceptor type impurities= %4.2f mho per meter', sigma_a);\n", "\n", "//Results\n", "// Conductivity of silicon = 4.32e-04 mho per meter\n", "// Conductivity with donor type impurities = 10.38 mho per meter\n", "// Conductivity with acceptor type impurities= 3.99 mho per meter " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }