{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 13: Optical devices" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.10: Quantum_efficiency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_Quantum efficiency\n", "//Ex_10//page 629\n", "n2=3.66 //index of refraction in GaAs\n", "n1=1 //index of refraction in air\n", "theta=asind(n1/n2)\n", "printf('The critical angle at semiconductor-air interface is %1.1f degree',theta)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1: Optical_absorptio.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_Optical absorption\n", "//Ex_1//page 598\n", "lambdai1=1*10^-4 //incident wavelength\n", "lambdai2=0.5*10^-4\n", "alpha1=100 //absorption coefficient\n", "d1=1*log(1/0.1)/alpha1 //If 90percent of the incident flux is to be absorbed in a distance d , then the flux emerging at x=d will be 10% of the incident flux\n", "alpha2=10000\n", "d2=1*log(1/0.1)/alpha2*10^4\n", "printf('As the incident photon energy increases, the absorption coefficient increases rapidly since d1=%1.4f cm and d2=%1.2f micrometer',d1,d2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.2: Electron_hole_pair_generation_rate.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_Electron hole pair generation rate\n", "//Ex_2//page 600\n", "T=300\n", "Ivx=0.05 //photon intensity\n", "lambda=0.75 //wavelength\n", "alpha=0.7*10^4 //absorption coefficient\n", "h=1.24\n", "v=1/lambda // v is the frequency\n", "E=h*v //energy in eV,\n", "g=alpha*Ivx/(1.6*10^-19*h*v) //generation rate of electron hole pair\n", "tau=10^-7 //lifetime of minority carrier\n", "deln=g*tau //excess carrier concentration\n", "printf('The generation rate of electron hole pair is %1.2f cm^-3 s^-1',g)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.3: Solar_cells.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_Solar cells\n", "//Ex_3//page 602\n", "Na=5*10^18\n", "Nd=10^16\n", "Dn=25\n", "e=1.6*10^-19\n", "ni=1.5*10^10\n", "Dp=10\n", "tau_no=5*10^-7\n", "tau_po=10^-7\n", "JL=15*10^-3 //photocurrent density\n", "Ln=(Dn*tau_no)^0.5\n", "Lp=(Dp*tau_po)^0.5\n", "Js=e*(ni^2)*((Dn/(Ln*Na))+(Dp/(Lp*Nd)))\n", "Voc=0.0259*log(1+JL/Js)\n", "printf('Open circuit voltage of SI pn juncton solar cell is %1.3f V',Voc)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.4: Solar_concentration.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_Solar concentration\n", "//Ex_4//page 605\n", "JL==150*10^-3 //PHOTOCURRENT DENSITY\n", "Js=3.6*10^-11 //reverse saturation current density\n", "Voc=0.0259*log(1+JL/Js)\n", "printf('Open circuit voltage when solar concentration is used is %1.3f V',Voc)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.5: Photo_conductor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_Photo conductor\n", "//Ex_5//page 611\n", "mup=480\n", "mun=1350\n", "L=100*10^-4 //length of photoconductor\n", "A=10^-7 //cross sectional area\n", "tau_p=10^-6 //minority carrier lifetime\n", "V=10 //applied voltage\n", "tn=L^2/(mun*V)\n", "//photoconductor gain is\n", "G=(tau_p/tn)*(1+(mup/mun))\n", "printf('The photoconductor gain is %1.2f',G)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.6: Photo_diode.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_Photodiode\n", "//Ex_6//page 616\n", "Na=10^16\n", "eps=8.85*10^-14;\n", "Nd=10^16\n", "Dn=25\n", "Dp=10\n", "tau_no=5*10^-7\n", "e=1.6*10^-19\n", "ni=1.5*10^10\n", "tau_po=10^-7\n", "VR=5 //reverse bias voltage\n", "GL=10^21 //generation rate of excess carriers\n", "Ln=(Dn*tau_no)^0.5\n", "Lp=(Dp*tau_po)^0.5\n", "Vbi=0.0259*log(Na*Nd/ni^2)\n", "W=((2*eps/e)*((Na+Nd)/(Na*Nd))*(Vbi+VR))^0.5\n", "JL=e*(W+Ln+Lp)*GL\n", "printf('The steady state photocurrent density is %1.2f A/cm^2',JL)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.7: PIN_Photodiode.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_PIN Photodiode\n", "//Ex_7//page 618\n", "W=20*10^-4 //intrinsic region width\n", "phio=10^17 //photon flux\n", "alpha=10^3 //absorption coefficient\n", "GL1=alpha*phio //generation rate of electron hole pair at the front region\n", "GL2=GL1*exp(-alpha*W)\n", "JL=1000*e*phio*(1-exp(-alpha*W)) //photocurrent density\n", "printf('The photocurrent density in PIN photodiode is %1.1f mA/cm^2 ',JL)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.8: Materials.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_Materials\n", "//Ex_8//page 625\n", "Eg=1.42\n", "lambda=1.24/Eg //output wavelength of photon\n", "lam=0.653 //desired wavelength\n", "E=1.24/lam //bandgap energy\n", "printf('The band gap energy corresponding to visible given wavelength is %1.2f eV and it would correspond to a mole fraction of x=4',E)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.9: Quantum_efficiency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 13_Optical Devices\n", "//Caption_Quantum efficiency\n", "//Ex_9//page 628\n", "n2=3.666 //index of refraction in GaAs\n", "n1=1 //index of refraction in air\n", "T=((n2-n1)/(n2+n1))^2 //reflection coeffucient\n", "printf('The reflection coefficient at semiconductor- air interface ius %1.2f',T)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.4: Heat_sinks_and_junction_temperature.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Chapter 14_Semiconductor Power Devices\n", "//Caption_Heat sinks and junction temperature\n", "//Ex_4//page-663\n", "P=20 //Rated power\n", "Tj_max=175 //Junction temperature\n", "TOC=25\n", "Tamb=25 //ambient temperature\n", "Theta_case_snk=1\n", "Theta_snk_amb=5\n", "Theta_dev_case=(Tj_max-TOC)/P\n", "PD_MAX=(Tj_max-Tamb)/(Theta_dev_case+Theta_case_snk+Theta_snk_amb)\n", "printf('Maximum power dissipated is %1.1f W',PD_MAX)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }