{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8: Common Base Approximations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.1: Value_of_VCB.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 8.1\n", "format('v',6)\n", "clc;\n", "clear;\n", "close;\n", "// given data\n", "V_EE= 10;// in V\n", "V_BE= 0.7;// in V\n", "R_E= 20*10^3;// in Ω\n", "V_CC= 25;// in V\n", "R_C= 10*10^3;// in Ω\n", "// The emitter current\n", "I_E= (V_EE-V_BE)/R_E;// in A\n", "I_C= I_E;// in A\n", "// The collector to base voltage,\n", "V_CB= V_CC-I_C*R_C;// in V\n", "disp(V_CB,'The value of V_CB in volts is : ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2: Value_of_VCB.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 8.2\n", "format('v',5)\n", "clc;\n", "clear;\n", "close;\n", "// given data\n", "V_EE= 12;// in V\n", "V_BE= 0.7;// in V\n", "R_E= 5.6*10^3;// in Ω\n", "V_CC= 15;// in V\n", "R_C= 6.8*10^3;// in Ω\n", "// The emitter current,\n", "I_E= (V_EE-V_BE)/R_E;// in A\n", "I_C= I_E;// in A\n", "// The collector to base voltage\n", "V_CB= V_CC-I_C*R_C;// in V\n", "disp(V_CB,'The value of V_CB in volts is : ')\n", "\n", "// Note : The answer in the book is not accurate.\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 8.3\n", "format('v',6)\n", "clc;\n", "clear;\n", "close;\n", "// given data\n", "V_EE= 15;// in V\n", "V_BE= 0.7;// in V\n", "R_E= 22*10^3;// in Ω\n", "Vin= 2*10^-3;// in V\n", "V= 25*10^-3;// in V\n", "R1= 10*10^3;// in Ω\n", "R2= 30*10^3;// in Ω\n", "I_E= (V_EE-V_BE)/R_E;// in A\n", "// The ac resistance of emitter diode,\n", "r_desh_e= V/I_E;// in Ω\n", "r_L= R1*R2/(R1+R2);// in Ω\n", "// The voltage gain\n", "A= r_L/r_desh_e;\n", "// The output voltage \n", "Vout= A*Vin;// in V\n", "Vout= Vout*10^3;// in mV\n", "disp(Vout,'The output voltage in mV is : ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4: Output_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Example 8.4\n", "format('v',5)\n", "clc;\n", "clear;\n", "close;\n", "// given data\n", "V_EE= 10;// in V\n", "V_BE= 0.7;// in V\n", "R_E= 6.8*10^3;// in Ω\n", "Rs= 100;// in Ω\n", "R1= 3.3*10^3;// in Ω\n", "R2= 1.5*10^3;// in Ω\n", "V= 25*10^-3;// in V\n", "Vs= 1*10^-3;// in V\n", "I_E= (V_EE-V_BE)/R_E;// in A\n", "r_desh_e= V/I_E;// in Ω\n", "Zin= r_desh_e;// in Ω\n", "// The input voltage to the emitter,\n", "Vin= Zin*Vs/(Rs+Zin);// in V\n", "r_L= R1*R2/(R1+R2);// in Ω\n", "// The voltage gain,\n", "A= r_L/r_desh_e;\n", "// The output voltage \n", "Vout= A*Vin;// in V\n", "Vout= Vout*10^3;// in mV\n", "disp(Vout,'The output voltage in mV is : ')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }