{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 10: Diffraction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.1: Width_of_central_band.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "D=1//Distance of screen from the slit in m\n", "w=6000//Wavelength in Angstrom\n", "w1=0.6//Slit width in mm\n", "\n", "//Calculations\n", "x=((2*D*w*10^-10)/(w1*10^-3))*1000//Width of central band in mm\n", "\n", "//Output\n", "printf('Width of central band is %i mm',x)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.2: Wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "d1=6000//Diffraction grating have number of lines per cm\n", "q=50//Diffracted second order spectral line observed in degrees\n", "n=2//Second order\n", "\n", "//Calculations\n", "w=(sind(q)/(d1*n))*10^8//Wavelength of radiation in Angstrom\n", "\n", "//Output\n", "printf('Wavelength of radiation is %3.1f Angstrom',w)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.3: Maximum_order_of_diffractio.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "d1=6000//Diffraction grating have number of lines per cm\n", "w=6000//Wavelength in Angstrom\n", "\n", "//Calculations\n", "n=(1/(d1*w*10^-8))//Maxmum order of diffraction\n", "\n", "//Output\n", "printf('Maximum order of diffraction that can be observed is %i',n)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.4: Ratio_of_intensity.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "B=(3*3.14)/2//First secondary maxima at B\n", "\n", "//Calculations\n", "I=(sin(B)/B)^2//Ratio of intensity of central maxima to first secondary maxima\n", "\n", "//Output\n", "printf('Ratio of intensity of central maxima to first secondary maxima is %3.3f',I)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.5: Distance.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "w=6400//Wave length of light in Angstrom\n", "w1=0.3//Slit width in mm\n", "d=110//Distance of screen from the slit in cm\n", "n=3//order\n", "\n", "//Calculations\n", "x=((n*w*10^-10*(d/100))/(w1*10^-3))*1000//Distance between the centre of the central maximum and the third dark fringe in mm\n", "\n", "//Output\n", "printf('Distance between the centre of the central maximum and the third dark fringe is %3.2f mm',x)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }