{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5: Natural Convection" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1: Convection_Heat_Loss_From_Room_Heater.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "// Display mode\n", "mode(0);\n", "\n", "// Display warning for floating point exception\n", "ieee(1);\n", "\n", "clc;\n", "disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.1 ');\n", "\n", "// ''Body temp in degree C''\n", "Tb = 127;\n", "//''Body temp in degree K''\n", "TbK = Tb+273;\n", "//''Ambient temp in degree C''\n", "Ta = 27;\n", "//''Ambient temp in degree K''\n", "TaK = Ta+273;\n", "//''Film temperature = (Body Temperature + Ambient Temperature)/2''\n", "//''Film temp in degree K''\n", "TfK = (TbK+TaK)/2;\n", "//''Value of coefficient of expansion at this film temp in degree K inverse''\n", "B = 1/TfK;\n", "//''Value of Prandtl number at this film temp''\n", "Pr = 0.71;\n", "//''Value of kinematic viscosity at this film temp in m2/s''\n", "v = 0.0000212;\n", "//''Value of thermal conductivity at this film temp in W/m-K''\n", "k = 0.0291;\n", "//''acceleration due to gravity in m/s2''\n", "g = 9.81;\n", "//''temperature diff. between body and ambient in degree K''\n", "deltaT = TbK-TaK;\n", "//''diameter of heater wire in m''\n", "d = 0.001;\n", "//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*d^3)/v^2)''\n", "Ra = ((((Pr*g)*B)*deltaT)*(d^3))/(v^2);\n", "\n", "//''From Fig. 5.3 on Page 303, we get''\n", "//''log(Nu) = 0.12, where Nu is nusselt number, therefore''\n", "Nu = 1.32;\n", "//''Using Nu = hc*d/k, we get heat transfer coefficient in W/m2-K''\n", "hc = (Nu*k)/d;\n", "disp('The rate of heat loss per meter length in air in W/m is given by hc*(A/l)*deltaT')\n", "//heat loss per meter length in air in W/m\n", "q = ((hc*deltaT)*%pi)*d\n", "\n", "//''For Co2, we evaluate the properties at film temperature''\n", "//''Following are the values of dimensionless numbers so obtained''\n", "//''Rayleigh number, Ra=16.90''\n", "//''Nusselt number, Nu=1.62''\n", "//''Using Nu = hc*d/k, we get''\n", "//''hc = 33.2 W/m2-K''\n", "disp('The rate of heat loss per meter length in CO2 is given by hc*(A/l)*deltaT')\n", "disp('q = 10.4 W/m')\n", "\n", "disp(' Discussion - For same area and temperature difference: ')\n", "disp(' Heat transfer by convection will be more, if heat transfer coeff. is high')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.2: Power_Requirement_of_Heater.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "// Display mode\n", "mode(0);\n", "\n", "// Display warning for floating point exception\n", "ieee(1);\n", "\n", "clc;\n", "disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.2 ');\n", "\n", "//''Surface temp in degree C''\n", "TsC = 130;\n", "//''Body temp in degree K''\n", "Ts = TsC+273;\n", "//''Ambient temp in degree C''\n", "TinfinityC = 20;\n", "//''Ambient temp in degree K''\n", "Tinfinity = TinfinityC+273;\n", "//''Film temperature = (Surface Temperature + Ambient Temperature)/2''\n", "//''Film temp in degree K''\n", "Tf = (Ts+Tinfinity)/2;\n", "//''Height of plate in cms''\n", "L = 15;\n", "//''Width of plate in cms''\n", "b = 10;\n", "//''Value of Grashof number at this film temp is given by\n", "//65(L^3)(Ts-Tinfinity)''\n", "//Grashof number\n", "Gr = (65*(L^3))*(Ts-Tinfinity);\n", "//''Since the grashof number is less than 10^9, therefore flow is laminar''\n", "//''For air at film temp = 75C (348K), Prandtl number is''\n", "Pr = 0.71;\n", "//''And the product Gr*Pr is''\n", "//Prodect of Gr and Pr\n", "GrPr = Gr*Pr;\n", "//''From Fig 5.5 on page 305, at this value of GrPr, Nusselt number is''\n", "Nu = 35.7;\n", "//''Value of thermal conductivity at this film temp in W/m-K''\n", "k = 0.029;\n", "\n", "//''Using Nu = hc*L/k, we get ''\n", "//Heat transfer coefficient for convection in W/m2-K\n", "hc = (Nu*k)/(L/100);\n", "\n", "//''Heat transfer coefficient for radiation, hr in W/m2-K''\n", "hr = 8.5;\n", "\n", "//''Total area in m2 is given by 2*(b/100)*(L/100)''\n", "A = (2*(b/100))*(L/100);\n", "\n", "\n", "disp('Therefore total heat transfer in W is given by A*(hc+hr)*(Ts-Tinfinity)')\n", "//total heat transfer in W\n", "q = (A*(hc+hr))*(Ts-Tinfinity)\n", "\n", "//''For plate to be 450cm in height, Rayleigh number becomes 4.62*10^11''\n", "//''which implies that the flow is turbulent''\n", "//''From Fig 5.5 on page 305, at this value of GrPr, Nusselt number is 973''\n", "//''Using Nu = hc*d/k, we get in W/m2-K, hc_bar=6.3''\n", "//''New Total area in m2, A_bar=2*(0.1)*(4.5)''\n", "\n", "disp('Therefore in new case, total heat transfer in W is given by A_bar*(hc_bar+hr)*(Ts-Tinfinity)')\n", "disp('we get q=1465W')\n", "\n", "\n", "disp(' Discussion - For same temperature difference: ')\n", "disp(' Heat transfer will be more, if area exposed for convection and radiation is more')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3: Heat_Loss_From_Grill.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "// Display mode\n", "mode(0);\n", "\n", "// Display warning for floating point exception\n", "ieee(1);\n", "\n", "clc;\n", "disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.3 ')\n", "\n", "//''Surface temp in degree C''\n", "TsC = 227;\n", "//''Body temp in degree K'')\n", "Ts = TsC+273;\n", "//''Ambient temp in degree C''\n", "TinfinityC = 27;\n", "//''Ambient temp in degree K''\n", "Tinfinity = TinfinityC+273;\n", "//''Film temperature = (Surface Temperature + Ambient Temperature)/2''\n", "//''Film temp in degree K'')\n", "Tf = (Ts+Tinfinity)/2;\n", "//''For a square plate, Height and width of plate in m''\n", "L = 1;\n", "b = 1;\n", "//''For a square plate, characteristic length = surface area/parameter in m''\n", "L_bar = (L*L)/(4*L);\n", "//''Value of coefficient of expansion at this film temp in degree K inverse''\n", "B = 1/Tf;\n", "//''Value of Prandtl number at this film temp''\n", "Pr = 0.71;\n", "//''Value of thermal conductivity at this film temp in W/m-K''\n", "k = 0.032;\n", "//''Value of kinematic viscosity at this film temp in m2/s''\n", "v = 0.000027;\n", "//''acceleration due to gravity in m/s2''\n", "g = 9.81;\n", "//''temperature diff. between body and ambient in degree K''\n", "deltaT = Ts-Tinfinity;\n", "//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*(L_bar)^3)/v^2)''\n", "//Rayleigh number\n", "Ra = ((((Pr*g)*B)*deltaT)*(L_bar^3))/(v^2);\n", "\n", "\n", "//''From eq. 5.17 on page 311, we have nusselt number for bottom plate as 0.27*Pr^0.25''\n", "NuBottom = 25.2;\n", "//''From eq. 5.16 on page 311, we have nusselt number for top plate as 0.27*Pr^0.25''\n", "NuTop = 63.4;\n", "//''And therefore corresponding heat transfer coeeficients are in W/m2-K''\n", "hcBottom = (NuBottom*k)/L_bar; //heat transfer coeeficients are in W/m2-K at bottom \n", "hcTop = (NuTop*k)/L_bar; //heat transfer coeeficients are in W/m2-K at top\n", "\n", "\n", "disp('Therefore total heat transfer in W is given by A*(hcTop+hcBottom)*(deltaT)')\n", "//heat transfer in W\n", "q = ((L*b)*(hcTop+hcBottom))*deltaT" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4: Transition_to_Turbulent_Flow_in_Pipe.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "// Display mode\n", "mode(0);\n", "\n", "// Display warning for floating point exception\n", "ieee(1);\n", "\n", "clc;\n", "disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.4 ');\n", "\n", "//''Ambient temp in degree C''\n", "TinfinityC = 27;\n", "//''Ambient temp in degree K''\n", "Tinfinity = TinfinityC+273;\n", "//''The criterion for transition is rayleigh number to be 10^9''\n", "\n", "\n", "//''Value of coefficient of expansion at this temp in degree K inverse''\n", "B = 1/Tinfinity;\n", "//''Value of Prandtl number at this ambient temp''\n", "Pr = 0.71;\n", "//''Diameter of pipe in m''\n", "D = 1;\n", "//''Value of kinematic viscosity at this temp in m2/s''\n", "v = 0.0000164;\n", "//''acceleration due to gravity in m/s2''\n", "g = 9.81;\n", "\n", "//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*(D)^3)/v^2) = 10^9''\n", "//''we get the temperature difference in centrigrade to be''\n", "deltaT = 12;\n", "disp('therefore the temperature of pipe in C is')\n", "// temperature of pipe in C\n", "Tpipe = TinfinityC+deltaT\n", "\n", "\n", "//''From table 13 in Appendix 2, for the case of water and using the same procedure we get''\n", "// temperature difference in C\n", "deltaTw = 0.05;\n", "disp('therefore the temperature of pipe in C is')\n", "// temperature of pipe in C\n", "Tpipew = TinfinityC+deltaTw\n", "\n", "disp(' Discussion - For air and water: ')\n", "disp(' Temperature required to induce turbulence is higher in air')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.5: Rate_of_Heat_Transfer_From_Burner.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "// Display mode\n", "mode(0);\n", "\n", "// Display warning for floating point exception\n", "ieee(1);\n", "\n", "clc;\n", "disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.5 ');\n", "\n", "//''Top surface temp in degree C''\n", "Tt = 20;\n", "//''Body temp in degree K''\n", "TtK = Tt+273;\n", "//''Bottom temp in degree C''\n", "Tb = 100;\n", "//''Ambient temp in degree K''\n", "TbK = Tb+273;\n", "//''Average temp = (Bottom Temperature + top Temperature)/2''\n", "//''average temp in degree K''\n", "T = (TbK+TtK)/2;\n", "//''Value of coefficient of expansion at this temp in degree K inverse''\n", "B = 0.000518;\n", "//''Value of Prandtl number at this temp''\n", "Pr = 3.02;\n", "//''Value of kinematic viscosity at this temp in m2/s''\n", "v = 0.000000478;\n", "//''acceleration due to gravity in m/s2''\n", "g = 9.8;\n", "//''temperature diff. between body and ambient in degree K''\n", "deltaT = TbK-TtK;\n", "//''depth of water in m''\n", "h = 0.08;\n", "//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*h^3)/v^2)''\n", "Ra = ((((Pr*g)*B)*deltaT)*(h^3))/(v^2);\n", "\n", "//''From Eq. (5.30b) on page 318, we find''\n", "//Nusselt number\n", "Nu = 79.3;\n", "//''Value of thermal conductivity at this film temp in W/m-K''\n", "k = 0.657;\n", "//''Using Nu = hc*d/k, we get heat transfer coefficient in W/m2-K''\n", "hc = (Nu*k)/h;\n", "//''diameter of pan in m''\n", "d = 0.15;\n", "//''area = pi*d*d/4''\n", "a = ((%pi*d)*d)/4;\n", "disp('The rate of heat loss in W is given by hc*(A)*deltaT')\n", "//heat loss in W\n", "q = (hc*deltaT)*a" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.6: Convection_Heat_Transfer_From_Shaft.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "\n", "\n", "\n", "// Display mode\n", "mode(0);\n", "\n", "// Display warning for floating point exception\n", "ieee(1);\n", "\n", "clc;\n", "disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.6 ');\n", "\n", "//''RPM of shaft''\n", "N = 3;\n", "//''Angular velocity, omega=2*pi*N/60 in rad/s''\n", "omega = 0.31;\n", "//''Ambient temp in degree C''\n", "Ta = 20;\n", "//''Ambient temp in degree K''\n", "TaK = Ta+273;\n", "//''Shaft temp in degree C''\n", "Ts = 100;\n", "//''Shaft temp in degree K''\n", "TsK = Ts+273;\n", "//''Film temperature = (Shaft Temperature + Ambient Temperature)/2''\n", "//''Film temp in degree K''\n", "TfK = (TsK+TaK)/2;\n", "//''diameter of shaft in m''\n", "d = 0.2;\n", "//''Value of kinematic viscosity at this film temp in m2/s''\n", "v = 0.0000194;\n", "//''Value of reynolds number''\n", "Re = (((%pi*d)*d)*omega)/v;\n", "\n", "\n", "//''acceleration due to gravity in m/s2''\n", "g = 9.81;\n", "//''temperature diff. between body and ambient in degree K''\n", "deltaT = TsK-TaK;\n", "//''Value of Prandtl number at this film temp''\n", "Pr = 0.71;\n", "//''Value of coefficient of expansion at this film temp in degree K inverse''\n", "B = 1/TfK;\n", "//''Therefore using Rayleigh number = ((Pr*g*B*deltaT*d^3)/v^2)''\n", "//Rayleigh number\n", "Ra = ((((Pr*g)*B)*deltaT)*(d^3))/(v^2);\n", "\n", "//''From Eq. 5.35 on Page 322, we get''\n", "//Nusselt number\n", "Nu = 49.2;\n", "//''Value of thermal conductivity at this film temp in W/m-K''\n", "k = 0.0279;\n", "//''Using Nu = hc*d/k, we get in W/m2-K''\n", "hc = (Nu*k)/d;\n", "//''let the length exposed to heat transfer is l=1m''\n", "//''then area in m2 = pi*d*l''\n", "a = %pi*d;\n", "disp('The rate of heat loss in air in W is given by hc*(a)*deltaT')\n", "//heat loss in air in W\n", "q = (hc*deltaT)*a" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }