{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 13: Lateral Earth Pressure" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.10: solved.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "H=28\n", "C=210\n", "b=10\n", "G=118\n", "c=20\n", "kh=0.1\n", "Ka=tand(45-c/2)\n", "zo=2*C/(G*(Ka))\n", "n=zo/(H-zo)\n", "Nac=1.60\n", "Nav=0.375\n", "L=1.17\n", "Pae= G*(H-zo)^2*(L*Nav)-C*(H-zo)*Nac\n", "printf('The magnitude of the active force, Pae = %f lb/ft',Pae)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1: solved.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "OCR=2\n", "a=30\n", "Ko=(1-sind(a))*(OCR)^sind(a)\n", "//at z=0\n", "To1=0\n", "Th1=0\n", "u1=0\n", "//at z=10\n", "To2=10*100\n", "Th2=Ko*To2\n", "u2=0\n", "//at z=15\n", "To3= 10*100+5*(122.4-62.4)\n", "Th3=Ko*To3\n", "u3=5*62.4\n", "//Lateral force Po =Area 1 + Area 2+ Area3+ Area 4\n", "Po =(1/2)*10*707+5*707+(1/2)*5*212.1+(1/2)*5*312\n", "z=((3535)*(5+10/3)+3535*(5/2)+530.3*(5/3)+780*(5/3))/Po\n", "printf('z = %f ft',z)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.2: solved.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "//c=0\n", "a=36\n", "G=16\n", "Ka=(1-sind(a))/(1+sind(a))\n", "//at z=0 Tp=0\n", "z=6\n", "To=G*z\n", "Ta=Ka*To\n", "Pa=z*Ta/2\n", "\n", "printf('a)Rankine active force per unit length of the wall = %f kN/m',Pa)\n", "printf(' and the location of the resultant is z = 2m\n')\n", "\n", "\n", "p=36\n", "G=16\n", "Kp=(1+sind(a))/(1-sind(a))\n", "//at z=0 Tp=0\n", "z=6\n", "To=G*z\n", "Tp=Kp*To\n", "Pp=z*Tp/2\n", "\n", "printf(' b)Rankine passive force per unit length of the wall = %f kN/m',Pp)\n", "printf(' and the location of the resultant is z = 2m')\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.3: solved.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "H=12\n", "a=20\n", "b=20\n", "G=115\n", "c=30\n", "Oa= asind(sind(a)/sind(c))-a+2*b\n", "Ka= (cosd(a-b)*sqrt(1+(sind(c))^2-2*sind(c)*cosd(Oa)))/((cosd(b))^2*(cosd(a)+sqrt((sind(c))^2-(sind(a))^2)))\n", "Pa=G*H^2*Ka/2\n", "B= atand((sind(c)*sind(Oa))/(1-(sind(c)*cosd(Oa))))\n", "printf('The active force Pa per unit length of the wall = %f lb/ft\n',Pa)\n", "printf( ' The resultant will act a distance of 12/3 = 4 ft above the bottom of the wall with B = %f degree',B)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.4: solved.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "a=30\n", "Ka1=(1-sind(a))/(1+sind(a))\n", "a=35\n", "Ka2=(1-sind(a))/(1+sind(a))\n", "//at z=0 so T0=0\n", "//atz=3\n", "To=3*16\n", "Ta1=Ka1*To\n", "Ta2=Ka2*To\n", "\n", "// At z=6\n", "To=3*16+3*(18-9.81)\n", "Ta2=Ka2*To\n", "\n", "Pa =(1/2)*3*16+3*13.0+ (1/2)*3*36.1\n", "z= (24 *(3+3/3)+39.0*(3/2)+54.15*(3/3))/Pa\n", "printf('The force per unit length of the wall = %f kN/m\n',Pa)\n", "printf (' The location of the resultant = %f m ',z)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.5: solved.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "Ka= (tand(1))^2\n", "G=16.5\n", "cu=10\n", "H=6\n", "//at z=0\n", "z=0\n", "Ta=G*z-2*cu\n", "//zt z=6\n", "z=6\n", "Ta=G*z-2*cu\n", "\n", "zo=2*cu/G\n", "// Before the tensile crack occurs\n", "Pa= G*H^2/2 - 2*cu*H\n", "printf('Pa before the tensile crack occurs = %f kN/m\n',Pa)\n", "//After the tensile crack occurs\n", "Pa=(H-zo)*Ta/2\n", "printf(' Pa after the tensile crack occurs = %f kN/m',Pa)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.6: solved.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "H=15\n", "a=10\n", "G=118\n", "b=20\n", "C=250\n", "Zo=2*C*sqrt((1+sind(b))/(1-sind(b)))/G\n", "//at z=0 Ta=0\n", "//at z=15 \n", "z=15\n", "K=0.3\n", "Ta=G*z*K*cosd(a)\n", "Pa=(H -Zo)*Ta/2\n", "printf('The Rankine active force Pa on the retaining wall after the tensile crack occurs = %f lb/ft',Pa)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.7: solved.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "c=30\n", "b=15\n", "a=10\n", "Ka=0.3872 // from table 13.8\n", "H=4\n", "G=15\n", "Pa=G*H^2*Ka/2\n", "printf('The active force per unit length Pa = %f kN/m\n',Pa)\n", "printf(' The resultant will act at a vertical distance equal to H/3 = 4/3 = 1.33 m above \n the bottom of the wall and will be inclined at an angle of 15to the back face of the wall.')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.9: solved.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "kh=0.2\n", "kv=0\n", "H=4\n", "a=0\n", "b=0\n", "c=15\n", "d=30\n", "G=15.5\n", "B= atand(kh/(1-kv))\n", "b1=b+B\n", "a1=a+B\n", "Ka=0.452\n", "Pa=G*H^2*Ka/2\n", "Pae=Pa*(1-kv)*((cosd(b1))^2/((cosd(b))^2*(cosd(B))^2))\n", "Ka=0.3014\n", "Pa=G*H^2*Ka/2\n", "P1=Pae-Pa\n", "z= ((Pa*H/3)+P1*0.6*H)/Pae\n", "printf('Pae = %f kN/m\n',Pae)\n", "printf(' Z = %f m',z)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }