{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 46: BRAKING" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 46.1: Braking_torque.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART IV : UTILIZATION AND TRACTION\n", "// CHAPTER 8: BRAKING\n", "\n", "// EXAMPLE : 8.1 :\n", "// Page number 806\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 525.0 // Voltage of motor(V)\n", "I_1 = 50.0 // Current(A)\n", "T_1 = 216.0 // Torque(N-m)\n", "I_2 = 70.0 // Current(A)\n", "T_2 = 344.0 // Torque(N-m)\n", "I_3 = 80.0 // Current(A)\n", "T_3 = 422.0 // Torque(N-m)\n", "I_4 = 90.0 // Current(A)\n", "T_4 = 500.0 // Torque(N-m)\n", "V_m = 26.0 // Speed(kmph)\n", "R_b = 5.5 // Resistance of braking rheostat(ohm)\n", "R_m = 0.5 // Resistance of motor(ohm)\n", "\n", "// Calculations\n", "I = 75.0 // Current drawn at 26 kmph(A)\n", "back_emf = V-I*R_m // Back emf of the motor(V)\n", "R_t = R_b+R_m // Total resistance(ohm)\n", "I_del = back_emf/R_t // Current delivered(A)\n", "T_b = T_3*I_del/I_3 // Braking torque(N-m)\n", "\n", "// Results\n", "disp('PART IV - EXAMPLE : 8.1 : SOLUTION :-')\n", "printf('\nBraking torque = %.f N-m', T_b)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 46.2: Current_delivered_when_motor_works_as_generator.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART IV : UTILIZATION AND TRACTION\n", "// CHAPTER 8: BRAKING\n", "\n", "// EXAMPLE : 8.2 :\n", "// Page number 806\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 525.0 // Voltage of motor(V)\n", "I_1 = 50.0 // Current(A)\n", "N_1 = 1200.0 // Speed(rpm)\n", "I_2 = 100.0 // Current(A)\n", "N_2 = 950.0 // Speed(rpm)\n", "I_3 = 150.0 // Current(A)\n", "N_3 = 840.0 // Speed(rpm)\n", "I_4 = 200.0 // Current(A)\n", "N_4 = 745.0 // Speed(rpm)\n", "N = 1000.0 // Speed opearting(rpm)\n", "R = 3.0 // Resistance(ohm)\n", "R_m = 0.5 // Resistance of motor(ohm)\n", "\n", "// Calculations\n", "I = 85.0 // Current drawn at 1000 rpm(A)\n", "back_emf = V-I*R_m // Back emf of the motor(V)\n", "R_t = R+R_m // Total resistance(ohm)\n", "I_del = back_emf/R_t // Current delivered(A)\n", "\n", "// Results\n", "disp('PART IV - EXAMPLE : 8.2 : SOLUTION :-')\n", "printf('\nCurrent delivered when motor works as generator = %.f A', I_del)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 46.3: Energy_returned_to_lines.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART IV : UTILIZATION AND TRACTION\n", "// CHAPTER 8: BRAKING\n", "\n", "// EXAMPLE : 8.3 :\n", "// Page number 810\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "W = 400.0 // Weight of train(tonne)\n", "G = 100.0/70 // Gradient(%)\n", "t = 120.0 // Time(sec)\n", "V_1 = 80.0 // Speed(km/hr)\n", "V_2 = 50.0 // Speed(km/hr)\n", "r_kg = 5.0 // Tractive resistance(kg/tonne)\n", "I = 7.5 // Rotational inertia(%)\n", "n = 0.75 // Overall efficiency\n", "\n", "// Calculations\n", "W_e = W*(100+I)/100 // Accelerating weight of train(tonne)\n", "r = r_kg*9.81 // Tractive resistance(N-m/tonne)\n", "energy_recuperation = 0.01072*W_e*(V_1**2-V_2**2)/1000 // Energy available for recuperation(kWh)\n", "F_t = W*(r-98.1*G) // Tractive effort during retardation(N)\n", "distance = (V_1+V_2)*1000*t/(2*3600) // Distance travelled by train during retardation period(m)\n", "energy_train = abs(F_t)*distance/(3600*1000) // Energy available during train movement(kWh)\n", "net_energy = n*(energy_recuperation+energy_train) // Net energy returned to supply system(kWh)\n", "\n", "// Results\n", "disp('PART IV - EXAMPLE : 8.3 : SOLUTION :-')\n", "printf('\nEnergy returned to lines = %.2f kWh\n', net_energy)\n", "printf('\nNOTE: ERROR: Calculation mistakes & more approximation in textbook solution')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 46.4: Energy_returned_to_the_line.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART IV : UTILIZATION AND TRACTION\n", "// CHAPTER 8: BRAKING\n", "\n", "// EXAMPLE : 8.4 :\n", "// Page number 810\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "W = 355.0 // Weight of train(tonne)\n", "V_1 = 80.5 // Speed(km/hr)\n", "V_2 = 48.3 // Speed(km/hr)\n", "D = 1.525 // Distance(km)\n", "G = 100.0/90 // Gradient(%)\n", "I = 10.0 // Rotational inertia(%)\n", "r = 53.0 // Tractive resistance(N/tonne)\n", "n = 0.8 // Overall efficiency\n", "\n", "// Calculations\n", "beta = (V_1**2-V_2**2)/(2*D*3600) // Braking retardation(km phps)\n", "W_e = W*(100+I)/100 // Accelerating weight of train(tonne)\n", "F_t = 277.8*W_e*beta+98.1*W*G-W*r // Tractive effort(N)\n", "work_done = F_t*D*1000 // Work done by this effort(N-m)\n", "energy = work_done*n/(1000*3600) // Energy returned to line(kWh)\n", "\n", "// Results\n", "disp('PART IV - EXAMPLE : 8.4 : SOLUTION :-')\n", "printf('\nEnergy returned to the line = %.1f kWh', energy)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 46.5: Braking_effect_and_Rate_of_retardation_produced_by_this_braking_effect.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART IV : UTILIZATION AND TRACTION\n", "// CHAPTER 8: BRAKING\n", "\n", "// EXAMPLE : 8.5 :\n", "// Page number 811-812\n", "clear ; clc ; close ; // Clear the work space and console\n", "funcprot(0)\n", "\n", "// Given data\n", "area = 16.13 // Area of brakes(sq.cm/pole face)\n", "phi = 2.5*10**-3 // Flux(Wb)\n", "u = 0.2 // Co-efficient of friction\n", "W = 10.0 // Weight of car(tonnes)\n", "\n", "// Calculations\n", "a = area*10**-4 // Area of brakes(sq.m/pole face)\n", "F = phi**2/(2*%pi*10**-7*a) // Force(N)\n", "force = F*u // Braking effect considering flux and coefficient of friction(N)\n", "beta = u*F/(W*1000)*100 // Rate of retardation produced by braking effect(cm/sec^2)\n", "\n", "// Results\n", "disp('PART IV - EXAMPLE : 8.5 : SOLUTION :-')\n", "printf('\nBraking effect, F = %.f N', force)\n", "printf('\nRate of retardation produced by this braking effect, β = %.2f cm/sec^2', beta)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }