{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 29: SYMMETRICAL COMPONENTS ANALYSIS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29.10: EX29_10.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART III : SWITCHGEAR AND PROTECTION\n", "// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS\n", "\n", "// EXAMPLE : 3.10 :\n", "// Page number 494\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "R = 20000.0 // Resistance of voltmeter(ohm)\n", "E_R = 100.0 // Line-to-neutral voltage(A)\n", "E_Y = 200.0*exp(%i*270.0*%pi/180) // Line-to-neutral voltage(A)\n", "E_B = 100.0*exp(%i*120.0*%pi/180) // Line-to-neutral voltage(A)\n", "\n", "// Calculations\n", "a = exp(%i*120.0*%pi/180) // Operator\n", "V_R0 = 1.0/3*(E_R+E_Y+E_B) // Zero sequence voltage(V)\n", "V_R1 = 1.0/3*(E_R+a*E_Y+a**2*E_B) // Positive sequence voltage(V)\n", "V_R2 = 1.0/3*(E_R+a**2*E_Y+a*E_B) // Negative sequence voltage(V)\n", "I_R1 = V_R1/R // Positive sequence current(A)\n", "I_R2 = V_R2/R // Negative sequence current(A)\n", "V_Y1 = a**2*V_R1 // Positive sequence voltage of line Y(V)\n", "V_Y2 = a*V_R2 // Negative sequence voltage of line Y(V)\n", "V_Y = V_Y1+V_Y2 // Voltmeter reading connected to the yellow line(V)\n", "I_Y = abs(V_Y)/R*1000 // Current through voltmeter(mA)\n", "\n", "// Results\n", "disp('PART III - EXAMPLE : 3.10 : SOLUTION :-')\n", "printf('\nVoltmeter reading connected to the yellow line, |V_Y| = %.1f V', abs(V_Y))\n", "printf('\nCurrent through voltmeter, I_Y = %.3f mA \n', I_Y)\n", "printf('\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29.11: Three_line_currents_and_Wattmeter_reading.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART III : SWITCHGEAR AND PROTECTION\n", "// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS\n", "\n", "// EXAMPLE : 3.11 :\n", "// Page number 495\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 400.0 // Voltage(V)\n", "Z_ab = 20.0 // Resistor load(ohm)\n", "Z_bc = -%i*40.0 // Capacitor load(ohm)\n", "Z_ca = 5.0+%i*10.0 // Inductor and resistance load(ohm)\n", "\n", "// Calculations\n", "V_ab = V // Line voltage(V)\n", "V_bc = V*exp(%i*-120.0*%pi/180) // Line voltage(V)\n", "V_ca = V*exp(%i*120.0*%pi/180) // Line voltage(V)\n", "I_ab = V_ab/Z_ab // Current(A)\n", "I_bc = V_bc/Z_bc // Current(A)\n", "I_ca = V_ca/Z_ca // Current(A)\n", "I_a = I_ab-I_ca // Line current(A)\n", "I_b = I_bc-I_ab // Line current(A)\n", "I_c = I_ca-I_bc // Line current(A)\n", "phi = -120.0-phasemag(I_a) // φ(°)\n", "P = abs(I_a*V_bc)*cosd(phi)/1000 // Wattmeter reading(kW)\n", "\n", "// Results\n", "disp('PART III - EXAMPLE : 3.11 : SOLUTION :-')\n", "printf('\nLine currents are:')\n", "printf('\n I_a = %.1f∠%.1f° A', abs(I_a),phasemag(I_a))\n", "printf('\n I_b = %.1f∠%.2f° A', abs(I_b),phasemag(I_b))\n", "printf('\n I_c = %.2f∠%.f° A', abs(I_c),phasemag(I_c))\n", "printf('\nWattmeter reading, P = %.2f kW \n', P)\n", "printf('\nNOTE: ERROR: Calculation mistakes in the textbook solution')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29.1: Positive_Negative_and_Zero_sequence_currents.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART III : SWITCHGEAR AND PROTECTION\n", "// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS\n", "\n", "// EXAMPLE : 3.1 :\n", "// Page number 487-488\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "I_R = complex(12.0,24.0) // Line current(A)\n", "I_Y = complex(16.0,-2.0) // Line current(A)\n", "I_B = complex(-4.0,-6.0) // Line current(A)\n", "\n", "// Calculations\n", "alpha = exp(%i*120.0*%pi/180) // Operator\n", "I_R0 = 1.0/3*(I_R+I_Y+I_B) // Zero sequence component(A)\n", "I_R1 = 1.0/3*(I_R+alpha*I_Y+alpha**2*I_B) // Positive sequence component(A)\n", "I_R2 = 1.0/3*(I_R+alpha**2*I_Y+alpha*I_B) // Negative sequence component(A)\n", "\n", "// Results\n", "disp('PART III - EXAMPLE : 3.1 : SOLUTION :-')\n", "printf('\nPositive sequence current, I_R1 = (%.3f + %.1fj) A', real(I_R1),imag(I_R1))\n", "printf('\nNegative sequence current, I_R2 = (%.3f + %.2fj) A', real(I_R2),imag(I_R2))\n", "printf('\nZero sequence current, I_R0 = (%.1f + %.2fj) A', real(I_R0),imag(I_R0))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29.4: Sequence_components_of_currents_in_the_resistors_and_Supply_lines.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART III : SWITCHGEAR AND PROTECTION\n", "// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS\n", "\n", "// EXAMPLE : 3.4 :\n", "// Page number 489-490\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "R_bc = 5.0 // Resistance of resistor connected b/w b & c(ohm)\n", "R_ca = 10.0 // Resistance of resistor connected b/w c & a(ohm)\n", "R_ab = 20.0 // Resistance of resistor connected b/w a & b(ohm)\n", "V = 100.0 // Voltage of balanced system(V)\n", "\n", "// Calculations\n", "E_A = -V // Voltage across resistor connected b/w b & c(V)\n", "angle = 60.0 // Angle in delta system(°)\n", "E_B = V*exp(%i*60.0*%pi/180) // Voltage across resistor connected b/w c & a(V)\n", "E_C = V*exp(%i*-60.0*%pi/180) // Voltage across resistor connected b/w a & b(V)\n", "I_A = E_A/R_bc // Current flowing across resistor connected b/w b & c(A)\n", "I_B = E_B/R_ca // Current flowing across resistor connected b/w c & a(A)\n", "I_C = E_C/R_ab // Current flowing across resistor connected b/w a & b(A)\n", "alpha = exp(%i*120.0*%pi/180) // Operator\n", "I_A0 = 1.0/3*(I_A+I_B+I_C) // Zero sequence delta current(A)\n", "I_A1 = 1.0/3*(I_A+alpha*I_B+alpha**2*I_C) // Positive sequence delta current(A)\n", "I_A2 = 1.0/3*(I_A+alpha**2*I_B+alpha*I_C) // Negative sequence delta current(A)\n", "I_a0 = 0.0 // Zero sequence star current(A)\n", "I_a1 = (alpha-alpha**2)*I_A1 // Positive sequence star current(A)\n", "I_a2 = (alpha**2-alpha)*I_A2 // Negative sequence star current(A)\n", "\n", "// Results\n", "disp('PART III - EXAMPLE : 3.4 : SOLUTION :-')\n", "printf('\nCurrent in the resistors are:')\n", "printf('\n I_A = (%.f+%.fj) A', real(I_A),imag(I_A))\n", "printf('\n I_B = (%.f+%.2fj) A', real(I_B),imag(I_B))\n", "printf('\n I_C = (%.1f%.2fj) A', real(I_C),imag(I_C))\n", "printf('\nSequence components of currents in the resistors:')\n", "printf('\n Zero-sequence current, I_A0 = (%.3f+%.2fj) A', real(I_A0),imag(I_A0))\n", "printf('\n Positive-sequence current, I_A1 = (%.2f+%.fj) A', real(I_A1),imag(I_A1))\n", "printf('\n Negative-sequence current, I_A2 = (%.2f%.2fj) A', real(I_A2),imag(I_A2))\n", "printf('\nSequence components of currents in the supply lines:')\n", "printf('\n Zero-sequence current, I_a0 = %.f A', I_a0)\n", "printf('\n Positive-sequence current, I_a1 = %.1fj A', imag(I_a1))\n", "printf('\n Negative-sequence current, I_a2 = (%.1f+%.2fj) A', real(I_a2),imag(I_a2))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29.5: EX29_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART III : SWITCHGEAR AND PROTECTION\n", "// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS\n", "\n", "// EXAMPLE : 3.5 :\n", "// Page number 490-491\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "E_a = 100.0 // Line to line voltage(V)\n", "E_b = 150.0 // Line to line voltage(V)\n", "E_c = 200.0 // Line to line voltage(V)\n", "\n", "// Calculations\n", "e_A = 1.0 // 100 V = 1 unit\n", "e_B = 1.5 // 150 V = 1 unit\n", "e_C = 2.0 // 200 V = 1 unit\n", "cos_alpha = (e_C**2-e_A-e_B**2)/(2*e_B)\n", "alpha = acosd(cos_alpha) // angle(°)\n", "cos_beta = (e_A+e_B*cos_alpha)/e_C\n", "beta = acosd(cos_beta) // angle(°)\n", "E_A = E_a*exp(%i*180.0*%pi/180) // Voltage(V)\n", "E_B = E_b*exp(%i*(180.0-alpha)*%pi/180) // Voltage(V)\n", "E_C = E_c*exp(%i*-beta*%pi/180) // Voltage(V)\n", "a = exp(%i*120.0*%pi/180) // Operator\n", "E_A0 = 1.0/3*(E_A+E_B+E_C) // Zero sequence voltage(V)\n", "E_A1 = 1.0/3*(E_A+a*E_B+a**2*E_C) // Positive sequence delta voltage(V)\n", "E_A1_mag = abs(E_A1) // Magnitude of positive sequence delta voltage(V)\n", "E_a1 = -%i/3**0.5*E_A1 // Positive sequence star voltage(V)\n", "E_a1_mag = abs(E_a1) // Magnitude of positive sequence star voltage(V)\n", "E_A2 = 1.0/3*(E_A+a**2*E_B+a*E_C) // Negative sequence delta voltage(V)\n", "E_A2_mag = abs(E_A2) // Magnitude of negative sequence delta voltage(V)\n", "E_a2 = %i/3**0.5*E_A2 // Negative sequence star voltage(V)\n", "E_a2_mag = abs(E_a2) // Magnitude of negative sequence star voltage(V)\n", "\n", "// Results\n", "disp('PART III - EXAMPLE : 3.5 : SOLUTION :-')\n", "printf('\nMagnitude of positive sequence delta voltage, |E_A1| = %.f V', E_A1_mag)\n", "printf('\nMagnitude of positive sequence star voltage, |E_a1| = %.1f V', E_a1_mag)\n", "printf('\nMagnitude of negative sequence delta voltage, |E_A2| = %.f V', E_A2_mag)\n", "printf('\nMagnitude of negative sequence star voltage, |E_a2| = %.f V', E_a2_mag)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29.6: Current_in_each_line_by_the_method_of_symmetrical_components.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART III : SWITCHGEAR AND PROTECTION\n", "// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS\n", "\n", "// EXAMPLE : 3.6 :\n", "// Page number 491-492\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 2300.0 // Rated voltage(V)\n", "kVA = 500.0 // kVA rating\n", "E_A = 2760.0*exp(%i*0*%pi/180) // Line voltage(V)\n", "E_B = 2300.0*exp(%i*-138.6*%pi/180) // Line voltage(V)\n", "E_C = 1840.0*exp(%i*124.2*%pi/180) // Line voltage(V)\n", "\n", "// Calculations\n", "a = exp(%i*120.0*%pi/180) // Operator\n", "E_A1 = 1.0/3*(E_A+a*E_B+a**2*E_C) // Positive sequence voltage(V)\n", "E_A2 = 1.0/3*(E_A+a**2*E_B+a*E_C) // Negative sequence voltage(V)\n", "E_a1 = -%i/3**0.5*E_A1 // Positive sequence star voltage(V)\n", "E_a2 = %i/3**0.5*E_A2 // Negative sequence star voltage(V)\n", "E_a0 = 0.0 // Zero sequence voltage(V)\n", "E_a = E_a1+E_a2+E_a0 // Symmetrical voltage component(V)\n", "R = V**2/(kVA*1000) // Resistance(ohm)\n", "I_a = abs(E_a)/R // Current in line a(A)\n", "E_b = a**2*E_a1+a*E_a2+E_a0 // Symmetrical voltage component(V)\n", "I_b = abs(E_b)/R // Current in line b(A)\n", "E_c = a*E_a1+a**2*E_a2+E_a0 // Symmetrical voltage component(V)\n", "I_c = abs(E_c)/R // Current in line c(A)\n", "\n", "// Results\n", "disp('PART III - EXAMPLE : 3.6 : SOLUTION :-')\n", "printf('\nCurrent in line a, |I_a| = %.1f A', I_a)\n", "printf('\nCurrent in line b, |I_b| = %.f A', I_b)\n", "printf('\nCurrent in line c, |I_c| = %.1f A \n', I_c)\n", "printf('\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29.7: Symmetrical_components_of_line_current_if_phase_3_is_only_switched_off.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART III : SWITCHGEAR AND PROTECTION\n", "// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS\n", "\n", "// EXAMPLE : 3.7 :\n", "// Page number 492-493\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 2300.0 // Rated voltage(V)\n", "kVA = 500.0 // kVA rating\n", "I_1 = 100.0 // Line current(A)\n", "I_2 = 100.0*exp(%i*180*%pi/180) // Line current(A)\n", "I_3 = 0 // Line current(A)\n", "\n", "// Calculations\n", "a = exp(%i*120.0*%pi/180) // Operator\n", "I_10 = 1.0/3*(I_1+I_2+I_3) // Symmetrical component of line current for phase 1(A)\n", "I_11 = 1.0/3*(I_1+a*I_2+a**2*I_3) // Symmetrical component of line current for phase 1(A)\n", "I_12 = 1.0/3*(I_1+a**2*I_2+a*I_3) // Symmetrical component of line current for phase 1(A)\n", "I_20 = I_10 // Symmetrical component of line current for phase 2(A)\n", "I_21 = a**2*I_11 // Symmetrical component of line current for phase 2(A)\n", "I_22 = a*I_12 // Symmetrical component of line current for phase 2(A)\n", "I_30 = I_10 // Symmetrical component of line current for phase 3(A)\n", "I_31 = a*I_11 // Symmetrical component of line current for phase 3(A)\n", "I_32 = a**2*I_12 // Symmetrical component of line current for phase 3(A)\n", "\n", "// Results\n", "disp('PART III - EXAMPLE : 3.7 : SOLUTION :-')\n", "printf('\nSymmetrical component of line current for phase 1:')\n", "printf('\n I_10 = %.1f A', abs(I_10))\n", "printf('\n I_11 = %.2f∠%.f° A', abs(I_11),phasemag(I_11))\n", "printf('\n I_12 = %.2f∠%.f° A', abs(I_12),phasemag(I_12))\n", "printf('\nSymmetrical component of line current for phase 2:')\n", "printf('\n I_20 = %.1f A', abs(I_20))\n", "printf('\n I_21 = %.2f∠%.f° A', abs(I_21),phasemag(I_21))\n", "printf('\n I_22 = %.2f∠%.f° A', abs(I_22),phasemag(I_22))\n", "printf('\nSymmetrical component of line current for phase 3:')\n", "printf('\n I_30 = %.1f A', abs(I_30))\n", "printf('\n I_31 = %.2f∠%.f° A', abs(I_31),phasemag(I_31))\n", "printf('\n I_32 = %.2f∠%.f° A', abs(I_32),phasemag(I_32))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29.8: Positive_Negative_and_Zero_sequence_components_of_currents_for_all_phases.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART III : SWITCHGEAR AND PROTECTION\n", "// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS\n", "\n", "// EXAMPLE : 3.8 :\n", "// Page number 493\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "I_a = 1000.0 // Current to earth(A)\n", "I_b = 0 // Current(A)\n", "I_c = 0 // Current(A)\n", "\n", "// Calculations\n", "a = exp(%i*120.0*%pi/180) // Operator\n", "I_a0 = 1.0/3*(I_a+I_b+I_c) // Zero sequence component of current(A)\n", "I_b0 = I_a0 // Zero sequence component of current(A)\n", "I_c0 = I_a0 // Zero sequence component of current(A)\n", "I_a1 = 1.0/3*(I_a+a*I_b+a**2*I_c) // Positive sequence component of current(A)\n", "I_b1 = a**2*I_a1 // Positive sequence component of current(A)\n", "I_c1 = a*I_a1 // Positive sequence component of current(A)\n", "I_a2 = 1.0/3*(I_a+a**2*I_b+a*I_c) // Negative sequence component of current(A)\n", "I_b2 = a*I_a2 // Negative sequence component of current(A)\n", "I_c2 = a**2*I_a2 // Negative sequence component of current(A)\n", "\n", "// Results\n", "disp('PART III - EXAMPLE : 3.8 : SOLUTION :-')\n", "printf('\nZero sequence component of current for all phases are')\n", "printf('\n I_a0 = %.1f∠%.f° A', abs(I_a0),phasemag(I_a0))\n", "printf('\n I_b0 = %.1f∠%.f° A', abs(I_b0),phasemag(I_b0))\n", "printf('\n I_c0 = %.1f∠%.f° A', abs(I_c0),phasemag(I_c0))\n", "printf('\nPositive sequence component of current for all phases are')\n", "printf('\n I_a1 = %.1f∠%.f° A', abs(I_a1),phasemag(I_a1))\n", "printf('\n I_b1 = %.1f∠%.f° A', abs(I_b1),360+phasemag(I_b1))\n", "printf('\n I_c1 = %.1f∠%.f° A', abs(I_c1),phasemag(I_c1))\n", "printf('\nNegative sequence component of current for all phases are')\n", "printf('\n I_a2 = %.1f∠%.f° A', abs(I_a2),phasemag(I_a2))\n", "printf('\n I_b2 = %.1f∠%.f° A', abs(I_b2),phasemag(I_b2))\n", "printf('\n I_c2 = %.1f∠%.f° A', abs(I_c2),360+phasemag(I_c2))" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 29.9: Currents_in_all_the_lines_and_their_symmetrical_components.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART III : SWITCHGEAR AND PROTECTION\n", "// CHAPTER 3: SYMMETRICAL COMPONENTS' ANALYSIS\n", "\n", "// EXAMPLE : 3.9 :\n", "// Page number 493-494\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "I_A = 1000.0 // Current through line A(A)\n", "I_C = 0 // Current through line C(A)\n", "\n", "// Calculations\n", "I_B = 1000.0*exp(%i*180.0*%pi/180) // Current through line B(A)\n", "a = exp(%i*120.0*%pi/180) // Operator\n", "I_a0 = 1.0/3*(I_A+I_B+I_C) // Zero sequence component of current(A)\n", "I_b0 = I_a0 // Zero sequence component of current(A)\n", "I_c0 = I_a0 // Zero sequence component of current(A)\n", "I_a1 = 1.0/3*(I_A+a*I_B+a**2*I_C) // Positive sequence component of current(A)\n", "I_b1 = a**2*I_a1 // Positive sequence component of current(A)\n", "I_c1 = a*I_a1 // Positive sequence component of current(A)\n", "I_a2 = 1.0/3*(I_A+a**2*I_B+a*I_C) // Negative sequence component of current(A)\n", "I_b2 = a*I_a2 // Negative sequence component of current(A)\n", "I_c2 = a**2*I_a2 // Negative sequence component of current(A)\n", "\n", "// Results\n", "disp('PART III - EXAMPLE : 3.9 : SOLUTION :-')\n", "printf('\nCurrent in line A, I_A = %.f∠%.f° A', abs(I_A),phasemag(I_A))\n", "printf('\nCurrent in line B, I_B = %.f∠%.f° A', abs(I_B),phasemag(I_B))\n", "printf('\nCurrent in line C, I_C = %.f A', I_C)\n", "printf('\nSymmetrical current components of line A are:')\n", "printf('\n I_a0 = %.f A', abs(I_a0))\n", "printf('\n I_a1 = %.1f∠%.f° A', abs(I_a1),phasemag(I_a1))\n", "printf('\n I_a2 = %.1f∠%.f° A', abs(I_a2),phasemag(I_a2))\n", "printf('\nSymmetrical current components of line B are:')\n", "printf('\n I_b0 = %.f A', abs(I_b0))\n", "printf('\n I_b1 = %.1f∠%.f° A', abs(I_b1),phasemag(I_b1))\n", "printf('\n I_b2 = %.1f∠%.f° A', abs(I_b2),phasemag(I_b2))\n", "printf('\nSymmetrical current components of line C are:')\n", "printf('\n I_c0 = %.f A', abs(I_c0))\n", "printf('\n I_c1 = %.1f∠%.f° A', abs(I_c1),phasemag(I_c1))\n", "printf('\n I_c2 = %.1f∠%.f° A', abs(I_c2),phasemag(I_c2))" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }