{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 22: INSULATION COORDINATION" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 22.1: Highest_voltage_to_which_the_transformer_is_subjected.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 15: INSULATION CO-ORDINATION\n", "\n", "// EXAMPLE : 15.1 :\n", "// Page number 398-399\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "L = 30.0 // Height of arrester located(m)\n", "BIL = 650.0 // BIL(kV)\n", "de_dt = 1000.0 // Rate of rising surge wave front(kV/µ-sec)\n", "V = 132.0 // Transformer voltage at HV side(kV)\n", "E_a = 400.0 // Discharge voltage of arrester(kV)\n", "v = 3.0*10**8 // Velocity of surge propagation(m/sec)\n", "\n", "// Calculations\n", "E_t = E_a+(2.0*de_dt*L/300) // Highest voltage the transformer is subjected(kV)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 15.1 : SOLUTION :-')\n", "printf('\nHighest voltage to which the transformer is subjected, E_t = %.f kV', E_t)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 22.2: Rating_of_LA_and_Location_with_respect_to_transformer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 15: INSULATION CO-ORDINATION\n", "\n", "// EXAMPLE : 15.2 :\n", "// Page number 399\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V_hv = 132.0 // Voltage at the HV side of transformer(kV)\n", "V_lv = 33.0 // Voltage at the LV side of transformer(kV)\n", "V = 860.0 // Insulator allowable voltage(kV)\n", "Z = 400.0 // Line surge impedance(ohm)\n", "BIL = 550.0 // BIL(kV)\n", "\n", "// Calculations\n", "V_rating_LA = V_hv*1.1*0.8 // Voltage rating of LA(kV)\n", "E_a = 351.0 // Discharge voltage at 5 kA(kV)\n", "I_disc = (2*V-E_a)*1000/Z // Discharge current(A)\n", "L_1 = 37.7 // Separation distance in current b/w arrester tap and power transformer tap(m)\n", "dist = 11.0 // Lead length from tap point to ground level(m)\n", "de_dt = 500.0 // Maximum rate of rise of surge(kV/µ-sec)\n", "Inductance = 1.2 // Inductance(µH/metre)\n", "di_dt = 5000.0 // di/dt(A/µ-sec)\n", "lead_drop = Inductance*dist*di_dt/1000 // Drop in the lead(kV)\n", "E_d = E_a+lead_drop // (kV)\n", "V_tr_terminal = E_d+2*de_dt*L_1/300 // Voltage at transformer terminals(kV)\n", "E_t = BIL/1.2 // Highest voltage the transformer is subjected(kV)\n", "L = (E_t-E_a)/(2*de_dt)*300 // Distance at which lightning arrester located from transformer(m)\n", "L_lead = (E_t-E_a*1.1)/(2*de_dt)*300 // Distance at which lightning arrester located from transformer taken 10% lead drop(m)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 15.2 : SOLUTION :-')\n", "printf('\nRating of L.A = %.1f kV', V_rating_LA)\n", "printf('\nLocation of L.A, L = %.f m', L)\n", "printf('\nLocation of L.A if 10 percent lead drop is considered, L = %.1f m', L_lead)\n", "printf('\nMaximum distance at which a ligtning arrester is usually connected from transformer is %.f-%.f m', L-2,L+3)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }