{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2: THERMAL STATIONS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.1: Limiting_value_and_Coal_per_hour.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART I : GENERATION\n", "// CHAPTER 2: THERMAL STATIONS\n", "\n", "// EXAMPLE : 2.1 :\n", "// Page number 25-26\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "//Given data\n", "M = 15000.0+10.0 // Water evaporated(kg)\n", "C = 5000.0+5.0 // Coal consumption(kg)\n", "time = 8.0 // Generation shift time(hours)\n", "\n", "//Calculations\n", "//Case(a)\n", "M1 = M-15000.0 \n", "C1 = C-5000.0 \n", "M_C = M1/C1 // Limiting value of water evaporation(kg)\n", "//Case(b)\n", "kWh = 0 // Station output at no load\n", "consumption_noload = 5000+5*kWh // Coal consumption at no load(kg)\n", "consumption_noload_hr = consumption_noload/time // Coal consumption per hour(kg)\n", "\n", "//Results\n", "disp('PART I - EXAMPLE : 2.1 : SOLUTION :-')\n", "printf('\nCase(a): Limiting value of water evaporation per kg of coal consumed, M/C = %.f kg', M_C)\n", "printf('\nCase(b): Coal per hour for running station at no load = %.f kg\n', consumption_noload_hr)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2: Average_load_on_power_plant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART I : GENERATION\n", "// CHAPTER 2: THERMAL STATIONS\n", "\n", "// EXAMPLE : 2.2 :\n", "// Page number 26\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "//Given data\n", "amount = 25.0*10**5 // Amount spent in 1 year(Rs)\n", "value_heat = 5000.0 // Heating value(kcal/kg)\n", "cost = 500.0 // Cost of coal per ton(Rs)\n", "n_ther = 0.35 // Thermal efficiency\n", "n_elec = 0.9 // Electrical efficiency\n", "\n", "//Calculations\n", "n = n_ther*n_elec // Overall efficiency\n", "consumption = amount/cost*1000 // Coal consumption in 1 year(kg)\n", "combustion = consumption*value_heat // Heat of combustion(kcal)\n", "output = n*combustion // Heat output(kcal)\n", "unit_gen = output/860.0 // Annual heat generated(kWh). 1 kWh = 860 kcal\n", "hours_year = 365*24.0 // Total time in a year(hour)\n", "load_average = unit_gen/hours_year // Average load on the power plant(kW)\n", "\n", "//Result\n", "disp('PART I - EXAMPLE : 2.2 : SOLUTION :-')\n", "printf('\nAverage load on power plant = %.2f kW\n', load_average)\n", "printf('\nNOTE: ERROR: Calculation mistake in the final answer in the textbook')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3: Heat_balance_sheet.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART I : GENERATION\n", "// CHAPTER 2: THERMAL STATIONS\n", "\n", "// EXAMPLE : 2.3 :\n", "// Page number 26\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "//Given data\n", "consumption = 0.5 // Coal consumption per kWh output(kg)\n", "cal_value = 5000.0 // Calorific value(kcal/kg)\n", "n_boiler = 0.8 // Boiler efficiency\n", "n_elec = 0.9 // Electrical efficiency\n", "\n", "//Calculations\n", "input_heat = consumption*cal_value // Heat input(kcal)\n", "input_elec = input_heat/860.0 // Equivalent electrical energy(kWh). 1 kWh = 860 kcal\n", "loss_boiler = input_elec*(1-n_boiler) // Boiler loss(kWh)\n", "input_steam = input_elec-loss_boiler // Heat input to steam(kWh)\n", "input_alter = 1/n_elec // Alternator input(kWh)\n", "loss_alter = input_alter*(1-n_elec) // Alternate loss(kWh)\n", "loss_turbine = input_steam-input_alter // Loss in turbine(kWh)\n", "loss_total = loss_boiler+loss_alter+loss_turbine // Total loss(kWh)\n", "output = 1.0 // Output(kWh)\n", "Input = output+loss_total // Input(kWh)\n", "\n", "//Results\n", "disp('PART I - EXAMPLE : 2.3 : SOLUTION :-')\n", "printf('\nHeat Balance Sheet')\n", "printf('\nLOSSES: Boiler loss = %.3f kWh', loss_boiler)\n", "printf('\n Alternator loss = %.2f kWh', loss_alter)\n", "printf('\n Turbine loss = %.3f kWh', loss_turbine)\n", "printf('\n Total loss = %.2f kWh', loss_total)\n", "printf('\nOUTPUT: %.1f kWh', output)\n", "printf('\nINPUT: %.2f kWh\n', Input)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }