{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 14: UNDERGROUND CABLES" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.10: Maximum_stress_in_the_two_dielectrics.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.10 :\n", "// Page number 215-216\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "e_1 = 3.6 // Inner relative permittivity\n", "e_2 = 2.5 // Outer relative permittivity\n", "d = 1.0 // Conductor diameter(cm)\n", "d_1 = 3.0 // Sheath diameter(cm)\n", "D = 5.0 // Overall diameter(cm)\n", "V_l = 66.0 // Line Voltage(kV)\n", "\n", "// Calculations\n", "V = V_l/3**0.5*2**0.5 // Peak voltage on core(kV)\n", "g1_max = 2*V/(d*(log(d_1/d)+e_1/e_2*log(D/d_1))) // Maximum stress in first dielectric(kV/km)\n", "g_max = 2*V/(d_1*(e_2/e_1*log(d_1/d)+log(D/d_1))) // Maximum stress in second dielectric(kV/km)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.10 : SOLUTION :-')\n", "printf('\nMaximum stress in first dielectric, g_1_max = %.2f kV/cm', g1_max)\n", "printf('\nMaximum stress in second dielectric, g_max = %.2f kV/cm', g_max)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.11: EX14_11.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.11 :\n", "// Page number 216-217\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 85.0 // Line Voltage(kV)\n", "g_max = 55.0 // Maximum stress(kV/cm)\n", "\n", "// Calculations\n", "V_1 = 0.632*V // Intersheath potential(kV)\n", "d = 0.736*V/g_max // Core diameter(cm)\n", "d_1 = 2*V/g_max // Intersheath diameter(cm)\n", "D = 3.76*V/g_max // Overall diameter(cm)\n", "d_un = 2*V/g_max // Core diameter of ungraded cable(cm)\n", "D_un = 2.718*d_1 // Overall diameter of ungraded cable(cm)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.11 : SOLUTION :-')\n", "printf('\nDiameter of intersheath, d_1 = %.2f cm', d_1)\n", "printf('\nVoltage of intersheath, V_1 = %.2f kV, to neutral', V_1)\n", "printf('\nConductor diameter of graded cable, d = %.2f cm', d)\n", "printf('\nOutside diameter of graded cable, D = %.2f cm', D)\n", "printf('\nConductor diameter of ungraded cable, d = %.2f cm', d_un)\n", "printf('\nOutside diameter of ungraded cable, D = %.2f cm', D_un)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.12: Equivalent_star_connected_capacity_and_kVA_required.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.12 :\n", "// Page number 219\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "c = 0.3 // Capacitance b/w any 2 conductor & sheath earthed(µF/km)\n", "l = 10.0 // Length(km)\n", "V = 33.0 // Line Voltage(kV)\n", "f = 50.0 // Frequency(Hz)\n", "\n", "// Calculations\n", "C_eq = l*c // Capacitance b/w any 2 conductor & sheath earthed(µF)\n", "C_p = 2.0*C_eq // Capacitance per phase(µF)\n", "kVA = V**2*2*%pi*f*C_p/1000.0 // Three-phase kVA required(kVA)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.12 : SOLUTION :-')\n", "printf('\nEquivalent star connected capacity, C_eq = %.f µF', C_eq)\n", "printf('\nkVA required = %.1f kVA', kVA)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.13: Charging_current_drawn_by_a_cable_with_three_cores.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.13 :\n", "// Page number 219\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 11.0*10**3 // Line Voltage(V)\n", "f = 50.0 // Frequency(Hz)\n", "C_c = 3.7 // Measured capacitance(µF)\n", "\n", "// Calculations\n", "C_0 = 2*C_c // Capacitance(µF)\n", "I_ch = 2*%pi*f*C_0*V/3**0.5*10**-6 // Charging current per phase(A)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.13 : SOLUTION :-')\n", "printf('\nCharging current drawn by a cable = %.2f A', I_ch)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.14: EX14_14.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.14 :\n", "// Page number 219-220\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "c_s = 0.90 // Capacitance b/w all conductors(µF)\n", "C_0 = 0.4 // Capacitance b/w two conductor(µF)\n", "V = 11.0*10**3 // Line Voltage(V)\n", "f = 50.0 // Frequency(Hz)\n", "\n", "// Calculations\n", "C_s = c_s/3.0 // Capacitance measured(µF)\n", "C_c = (C_0-C_s)/2.0 // Capacitance(µF)\n", "C_a = 3.0/2*(C_c+(1/3.0)*C_s) // Capacitance b/w any two conductors(µF)\n", "C_b = 2.0*C_c+(2.0/3)*C_s // Capacitance b/w any two bounded conductors and the third conductor(µF)\n", "C_o = 3.0*C_c+C_s // Capacitance to neutral(µF)\n", "I_c = 2.0*%pi*f*C_o*V/3**0.5*10**-6 // Charging current(A)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.14 : SOLUTION :-')\n", "printf('\nCase(a): Capacitance between any two conductors = %.3f µF', C_a)\n", "printf('\nCase(b): Capacitance between any two bounded conductors and the third conductor = %.1f µF', C_b)\n", "printf('\nCase(c): Capacitance to neutral, C_0 = %.2f µF', C_o)\n", "printf('\n Charging current taken by cable, I_c = %.3f A \n', I_c)\n", "printf('\nNOTE: ERROR: Calculation mistakes in textbook answer')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.15: Charging_current_drawn_by_cable.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.15 :\n", "// Page number 220-221\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 13.2*10**3 // Line Voltage(V)\n", "f = 50.0 // Frequency(Hz)\n", "C_BC = 4.2 // Capacitance b/w two cores(µF)\n", "\n", "// Calculations\n", "C_n = 2.0*C_BC // Capacitance to neutral(µF)\n", "V_ph = V/3**0.5 // Operating phase voltage(V)\n", "I_c = 2.0*%pi*f*C_n*V/3**0.5*10**-6 // Charging current(A)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.15 : SOLUTION :-')\n", "printf('\nCharging current drawn by cable, I_c = %.2f A', I_c)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.16: EX14_16.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.16 :\n", "// Page number 222-223\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 33.0*10**3 // Line Voltage(V)\n", "f = 50.0 // Frequency(Hz)\n", "l = 4.0 // Length(km)\n", "d = 2.5 // Diameter of conductor(cm)\n", "t = 0.5 // Radial thickness of insulation(cm)\n", "e_r = 3.0 // Relative permittivity of the dielectric\n", "PF = 0.02 // Power factor of unloaded cable\n", "\n", "// Calculations\n", "// Case(a)\n", "r = d/2.0 // Radius of conductor(cm)\n", "R = r+t // External radius(cm)\n", "e_0 = 8.85*10**-12 // Permittivity\n", "C = 2.0*%pi*e_0*e_r/log(R/r)*l*1000 // Capacitance of cable/phase(F)\n", "// Case(b)\n", "V_ph = V/3**0.5 // Phase voltage(V)\n", "I_c = V_ph*2.0*%pi*f*C // Charging current/phase(A)\n", "// Case(c)\n", "kVAR = 3.0*V_ph*I_c // Total charging kVAR\n", "// Case(d)\n", "phi = acosd(PF) // Φ(°)\n", "delta = 90.0-phi // δ(°)\n", "P_c = V_ph*I_c*sind(delta)/1000 // Dielectric loss/phase(kW)\n", "// Case(e)\n", "E_max = V_ph/(r*log(R/r)*1000) // RMS value of Maximum stress in cable(kV/cm)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.16 : SOLUTION :-')\n", "printf('\nCase(a): Capacitance of the cable, C = %.3e F/phase', C)\n", "printf('\nCase(b): Charging current = %.2f A/phase', I_c)\n", "printf('\nCase(c): Total charging kVAR = %.4e kVAR', kVAR)\n", "printf('\nCase(d): Dielectric loss/phase, P_c = %.2f kW', P_c)\n", "printf('\nCase(e): Maximum stress in the cable, E_max = %.1f kV/cm (rms)', E_max)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.1: Insulation_resistance_per_km.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.1 :\n", "// Page number 211\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "d = 2.5 // Core diameter(cm)\n", "t = 1.25 // Insulation thickness(cm)\n", "rho = 4.5*10**14 // Resistivity of insulation(ohm-cm)\n", "l = 10.0**5 // Length(cm)\n", "\n", "// Calculations\n", "D = d+2*t // Overall diameter(cm)\n", "R_i = rho/(2*%pi*l)*log(D/d) // Insulation resistance(ohm)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.1 : SOLUTION :-')\n", "printf('\nInsulation resistance per km, R_i = %.2e ohm\n', R_i)\n", "printf('\nNOTE: ERROR: Mistake in final answer in textbook')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.2: Insulation_thickness.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.2 :\n", "// Page number 211\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "R = 495.0*10**6 // Insulation resistance(ohm/km)\n", "d = 3.0 // Core diameter(cm)\n", "rho = 4.5*10**14 // Resistivity of insulation(ohm-cm)\n", "\n", "// Calculations\n", "l = 1000.0 // Length of cable(m)\n", "r_2 = d/2.0 // Core radius(cm)\n", "Rho = rho/100.0 // Resistivity of insulation(ohm-m)\n", "r1_r2 = exp((2*%pi*l*R)/Rho) // r1/r2\n", "r_1 = 2*r_2 // Cable radius(cm)\n", "thick = r_1-r_2 // Insulation thickness(cm)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.2 : SOLUTION :-')\n", "printf('\nInsulation thickness = %.1f cm', thick)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.3: Capacitance_and_Charging_current_of_single_core_cable.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.3 :\n", "// Page number 212\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 66.0*10**3 // Line Voltage(V)\n", "l = 1.0 // Length of cable(km)\n", "d = 15.0 // Core diameter(cm)\n", "D = 60.0 // Sheath diameter(cm)\n", "e_r = 3.6 // Relative permittivity\n", "f = 50.0 // Frequency(Hz)\n", "\n", "// Calculations\n", "C = e_r/(18.0*log(D/d))*l // Capacitance(µF)\n", "I_ch = V/3**0.5*2*%pi*f*C*10**-6 // Charging current(A)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.3 : SOLUTION :-')\n", "printf('\nCapacitance of single-core cable, C = %.3f µF', C)\n", "printf('\nCharging current of single-core cable = %.2f A', I_ch)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.4: EX14_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.4 :\n", "// Page number 212\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V_l = 132.0 // Line Voltage(kV)\n", "g_max = 60.0 // Maximum Line Voltage(kV)\n", "\n", "// Calculations\n", "V = V_l/3**0.5*2**0.5 // Phase Voltage(kV)\n", "d = 2*V/g_max // Core diameter(cm)\n", "D = 2.718*d // Overall diameter(cm)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.4 : SOLUTION :-')\n", "printf('\nMost economical diameter of a single-core cable, d = %.1f cm', d)\n", "printf('\nOverall diameter of the insulation, D = %.3f cm\n', D)\n", "printf('\nNOTE: Slight change in obtained answer due to precision')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.6: Conductor_radius_and_Electric_field_strength_that_must_be_withstood.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.6 :\n", "// Page number 212-213\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 11.0*10**3 // Line Voltage(V)\n", "dia_out = 8.0 // Outside diameter(cm)\n", "\n", "// Calculations\n", "D = dia_out/2.0 // Overall diameter(cm)\n", "d = (D)/2.718 // Conductor diameter(cm)\n", "r = d/2 // Conductor radius(cm)\n", "g_m = 2*V/(d*log(D/d)*10) // Maximum value of electric field strength(kV/m)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.6 : SOLUTION :-')\n", "printf('\nConductor radius, r = %.3f cm', r)\n", "printf('\nElectric field strength that must be withstood, g_m = %.f kV/m', g_m)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.7: EX14_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.7 :\n", "// Page number 214\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "R_3 = 1.00 // Cable radius(cm)\n", "R_1 = 2.5 // Cable radius(cm)\n", "\n", "// Calculations\n", "R_2 = (R_1*R_3)**0.5 // Location of intersheath(cm)\n", "alpha = R_1/R_2 // α\n", "ratio = 2.0/(1+alpha) // Ratio of maximum electric field strength with & without intersheath\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.7 : SOLUTION :-')\n", "printf('\nLocation of intersheath, R_2 = %.2f cm', R_2)\n", "printf('\nRatio of maximum electric field strength with & without intersheath = %.3f ', ratio)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.8: Maximum_and_Minimum_stress_in_the_insulation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.8 :\n", "// Page number 215\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V = 33.0 // Line Voltage(kV)\n", "D_2 = 2.0 // Conductor diameter(cm)\n", "D_1 = 3.0 // Sheath diameter(cm)\n", "\n", "// Calculations\n", "R_2 = D_2/2 // Conductor radius(cm)\n", "R_1 = D_1/2 // Sheath radius(cm)\n", "g_max = V/(R_2*log(R_1/R_2)) // RMS value of maximum stress in the insulation(kV/cm)\n", "g_min = V/(R_1*log(R_1/R_2)) // RMS value of minimum stress in the insulation(kV/cm)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.8 : SOLUTION :-')\n", "printf('\nMaximum stress in the insulation, g_max = %.2f kV/cm (rms)', g_max)\n", "printf('\nMinimum stress in the insulation, g_min = %.2f kV/cm (rms)', g_min)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 14.9: EX14_9.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 7: UNDERGROUND CABLES\n", "\n", "// EXAMPLE : 7.9 :\n", "// Page number 215\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "d = 2.5 // Conductor diameter(cm)\n", "D = 6.0 // Sheath diameter(cm)\n", "V_l = 66.0 // Line Voltage(kV)\n", "\n", "// Calculations\n", "alpha = (D/d)**(1.0/3) // α\n", "d_1 = d*alpha // Best position of first intersheath(cm)\n", "d_2 = d_1*alpha // Best position of second intersheath(cm)\n", "V = V_l/3**0.5*2**0.5 // Peak voltage on core(kV)\n", "V_2 = V/(1+(1/alpha)+(1/alpha**2)) // Peak voltage on second intersheath(kV)\n", "V_1 = (1+(1/alpha))*V_2 // Voltage on first intersheath(kV)\n", "stress_max = 2*V/(d*log(D/d)) // Maximum stress without intersheath(kV/cm)\n", "stress_min = stress_max*d/D // Minimum stress without intersheath(kV/cm)\n", "g_max = V*3/(1+alpha+alpha**2) // Maximum stress with intersheath(kV/cm)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 7.9 : SOLUTION :-')\n", "printf('\nMaximum stress without intersheath = %.2f kV/cm', stress_max)\n", "printf('\nBest position of first intersheath, d_1 = %.2f cm', d_1)\n", "printf('\nBest position of second intersheath, d_2 = %.3f cm', d_2)\n", "printf('\nMaximum stress with intersheath = %.2f kV/cm', g_max)\n", "printf('\nVoltage on the first intersheath, V_1 = %.2f kV', V_1)\n", "printf('\nVoltage on the second intersheath, V_2 = %.2f kV \n', V_2)\n", "printf('\nNOTE: Changes in the obtained answer is due to more precision here') " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }