{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 11: OVERHEAD LINE INSULATORS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.1: Ratio_of_capacitance_Line_voltage_and_String_efficiency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 4: OVERHEAD LINE INSULATORS\n", "\n", "// EXAMPLE : 4.1 :\n", "// Page number 183\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V_1 = 9.0 // Potential across top unit(kV)\n", "V_2 = 11.0 // Potential across middle unit(kV)\n", "n = 3.0 // Number of disc insulators\n", "\n", "// Calculations\n", "// Case(a)\n", "K = (V_2-V_1)/V_1 // Ratio of capacitance b/w pin & earth to self capacitance\n", "// Case(b)\n", "V_3 = V_2+(V_1+V_2)*K // Potential across bottom unit(kV)\n", "V = V_1+V_2+V_3 // Voltage between line and earth(kV)\n", "V_l = 3**0.5*V // Line voltage(kV)\n", "// Case(c)\n", "eff = V/(n*V_3)*100 // String efficiency(%)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 4.1 : SOLUTION :-')\n", "printf('\nCase(a): Ratio of capacitance b/w pin & earth to self-capacitance of each unit, K = %.2f ', K)\n", "printf('\nCase(b): Line voltage = %.2f kV', V_l)\n", "printf('\nCase(c): String efficiency = %.f percent', eff)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.2: Mutual_capacitance_of_each_unit_in_terms_of_C.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 4: OVERHEAD LINE INSULATORS\n", "\n", "// EXAMPLE : 4.2 :\n", "// Page number 183-184\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "m = 10.0 // Mutual capacitance of top insulator in terms of C\n", "\n", "// Calculations\n", "X = 1+m // Mutual capacitance in terms of C\n", "Y = (1.0+2)+m // Mutual capacitance in terms of C\n", "Z = (1.0+2+3)+m // Mutual capacitance in terms of C\n", "U = (1.0+2+3+4)+m // Mutual capacitance in terms of C\n", "V = (1.0+2+3+4+5)+m // Mutual capacitance in terms of C\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 4.2 : SOLUTION :-')\n", "printf('\nMutual capacitance of each unit:')\n", "printf('\n X = %.f*C', X)\n", "printf('\n Y = %.f*C', Y)\n", "printf('\n Z = %.f*C', Z)\n", "printf('\n U = %.f*C', U)\n", "printf('\n V = %.f*C', V)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.3: EX11_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 4: OVERHEAD LINE INSULATORS\n", "\n", "// EXAMPLE : 4.3 :\n", "// Page number 184\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "n = 3.0 // Number of insulators\n", "\n", "// Calculations\n", "V_1 = 155.0/475.0 // Potential across top unit\n", "V_2 = 154.0/155.0*V_1 // Potential across middle unit\n", "V_3 = 166.0/155.0*V_1 // Potential across bottom unit\n", "eff = 100/(n*V_3) // String efficiency(%)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 4.3 : SOLUTION :-')\n", "printf('\nVoltage across top unit, V_1 = %.3f*V', V_1)\n", "printf('\nVoltage across middle unit, V_2 = %.3f*V', V_2)\n", "printf('\nVoltage across bottom unit, V_3 = %.2f*V', V_3)\n", "printf('\nString efficiency = %.2f percent', eff)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.4: Line_to_neutral_voltage_and_String_efficiency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 4: OVERHEAD LINE INSULATORS\n", "\n", "// EXAMPLE : 4.4 :\n", "// Page number 184-185\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "V_3 = 17.5 // Voltage across line unit(kV)\n", "c = 1.0/8 // Shunt capacitance = 1/8 of insulator capacitance\n", "n = 3.0 // Number of insulators\n", "\n", "// Calculations\n", "K = c // String constant\n", "V_1 = V_3/(1+3*K+K**2) // Voltage across top unit(kV)\n", "V_2 = (1+K)*V_1 // Voltage across middle unit(kV)\n", "V = V_1+V_2+V_3 // Voltage between line & earth(kV)\n", "eff = V*100/(n*V_3) // String efficiency(%)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 4.4 : SOLUTION :-')\n", "printf('\nLine to neutral voltage, V = %.2f kV', V)\n", "printf('\nString efficiency = %.2f percent', eff)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.5: Value_of_line_to_pin_capacitance.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 4: OVERHEAD LINE INSULATORS\n", "\n", "// EXAMPLE : 4.5 :\n", "// Page number 185\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "n = 8.0 // Number of insulators\n", "\n", "// Calculations\n", "A = 1.0/(n-1) // Line to pin capacitance\n", "B = 2.0/(n-2) // Line to pin capacitance\n", "C = 3.0/(n-3) // Line to pin capacitance\n", "D = 4.0/(n-4) // Line to pin capacitance\n", "E = 5.0/(n-5) // Line to pin capacitance\n", "F = 6.0/(n-6) // Line to pin capacitance\n", "G = 7.0/(n-7) // Line to pin capacitance\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 4.5 : SOLUTION :-')\n", "printf('\nLine-to-pin capacitance are:')\n", "printf('\n A = %.3f*C', A)\n", "printf('\n B = %.3f*C', B)\n", "printf('\n C = %.3f*C', C)\n", "printf('\n D = %.3f*C', D)\n", "printf('\n E = %.3f*C', E)\n", "printf('\n F = %.3f*C', F)\n", "printf('\n G = %.3f*C', G)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.6: EX11_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 4: OVERHEAD LINE INSULATORS\n", "\n", "// EXAMPLE : 4.6 :\n", "// Page number 186\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "m = 6.0 // Mutual capacitance\n", "n = 5.0 // Number of insulators\n", "\n", "// Calculations\n", "E_4 = (1+(1/m)) // Voltage across 4th insulator as percent of E_5(%)\n", "E_3 = (1+(3/m)+(1/m**2)) // Voltage across 3rd insulator as percent of E_5(%)\n", "E_2 = (1+(6/m)+(5/m**2)+(1/m**3)) // Voltage across 2nd insulator as percent of E_5(%)\n", "E_1 = (1+(10/m)+(15/m**2)+(7/m**3)+(1/m**4)) // Voltage across 1st insulator as percent of E_5(%)\n", "E_5 = 100/(E_4+E_3+E_2+E_1+1) // Voltage across 5th insulator as percent of E_5(%)\n", "E4 = E_4*E_5 // Voltage across 4th insulator as percent of E_5(%)\n", "E3 = E_3*E_5 // Voltage across 3rd insulator as percent of E_5(%)\n", "E2 = E_2*E_5 // Voltage across 2nd insulator as percent of E_5(%)\n", "E1 = E_1*E_5 // Voltage across 1st insulator as percent of E_5(%)\n", "eff = 100/(n*E1/100) // String efficiency(%)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 4.6 : SOLUTION :-')\n", "printf('\nVoltage distribution as a percentage of voltage of conductor to earth are:')\n", "printf('\n E_1 = %.2f percent', E1)\n", "printf('\n E_2 = %.2f percent', E2)\n", "printf('\n E_3 = %.1f percent', E3)\n", "printf('\n E_4 = %.1f percent', E4)\n", "printf('\n E_5 = %.2f percent', E_5)\n", "printf('\nString efficiency = %.f percent \n', eff)\n", "printf('\nNOTE: Changes in obtained answer from that of textbook is due to more precision')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.7: EX11_7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 4: OVERHEAD LINE INSULATORS\n", "\n", "// EXAMPLE : 4.7 :\n", "// Page number 186-187\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "n = 3.0 // Number of insulators\n", "C_1 = 0.2 // Capacitance in terms of C\n", "C_2 = 0.1 // Capacitance in terms of C\n", "\n", "// Calculations\n", "// Without guard ring\n", "e_2_a = 13.0/13.3 // Potential across middle unit as top unit\n", "e_1_a = 8.3/6.5*e_2_a // Potential across bottom unit\n", "E_a = 1+(1/(8.3/6.5))+(1/e_1_a) // Voltage in terms of e_1\n", "eff_a = E_a/n*100 // String efficiency(%)\n", "e1_a = 1/E_a // Voltage across bottom unit as a % of line voltage\n", "e2_a = 1/(8.3/6.5)*e1_a // Voltage across middle unit as a % of line voltage\n", "e3_a = 1/e_1_a*e1_a // Voltage across top unit as a % of line voltage\n", "// With guard ring\n", "e_2_b = 15.4/15.5 // Potential across middle unit as top unit\n", "e_1_b = 8.3/7.7*e_2_b // Potential across bottom unit\n", "E_b = 1+(1/(8.3/7.7))+(1/e_1_b) // Voltage in terms of e_1\n", "eff_b = E_b/n*100 // String efficiency(%)\n", "e1_b = 1/E_b // Voltage across bottom unit as a % of line voltage\n", "e2_b = 1/(8.3/7.7)*e1_b // Voltage across middle unit as a % of line voltage\n", "e3_b = 1/e_1_b*e1_b // Voltage across top unit as a % of line voltage\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 4.7 : SOLUTION :-')\n", "printf('\nWithout guard ring:')\n", "printf('\n Voltage across bottom unit, e_1 = %.2f*E', e1_a)\n", "printf('\n Voltage across bottom unit, e_2 = %.2f*E', e2_a)\n", "printf('\n Voltage across bottom unit, e_3 = %.2f*E', e3_a)\n", "printf('\n String efficiency = %.1f percent \n', eff_a)\n", "printf('\nWith guard ring:')\n", "printf('\n Voltage across bottom unit, e_1 = %.2f*E', e1_b)\n", "printf('\n Voltage across bottom unit, e_2 = %.2f*E', e2_b)\n", "printf('\n Voltage across bottom unit, e_3 = %.3f*E', e3_b)\n", "printf('\n String efficiency = %.2f percent', eff_b)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.8: EX11_8.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 4: OVERHEAD LINE INSULATORS\n", "\n", "// EXAMPLE : 4.8 :\n", "// Page number 187-188\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "n = 3.0 // Number of insulators\n", "\n", "// Calculations\n", "V_1 = 0.988 // Voltage across top unit as middle unit\n", "V_3 = 1.362 // Voltage across bottom unit as middle unit\n", "V_2 = 1/(V_1+1+V_3) // Voltage across middle unit as % of line voltage to earth\n", "V1 = V_1*V_2*100 // Voltage across top unit as % of line voltage to earth\n", "V2 = V_2*100 // Voltage across middle unit as % of line voltage to earth\n", "V3 = V_3*V_2*100 // Voltage across bottom unit as % of line voltage to earth\n", "eff = 100/(n*V3/100) // String efficiency(%)\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 4.8 : SOLUTION :-')\n", "printf('\nCase(a): Voltage across top unit as a percentage of line voltage to earth, V_1 = %.2f percent', V1)\n", "printf('\n Voltage across middle unit as a percentage of line voltage to earth, V_2 = %.2f percent', V2)\n", "printf('\n Voltage across bottom unit as a percentage of line voltage to earth, V_3 = %.2f percent', V3)\n", "printf('\nCase(b): String efficiency = %.2f percent', eff)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11.9: Voltage_on_the_line_end_unit_and_Value_of_capacitance_required.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// A Texbook on POWER SYSTEM ENGINEERING\n", "// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", "// DHANPAT RAI & Co.\n", "// SECOND EDITION \n", "\n", "// PART II : TRANSMISSION AND DISTRIBUTION\n", "// CHAPTER 4: OVERHEAD LINE INSULATORS\n", "\n", "// EXAMPLE : 4.9 :\n", "// Page number 188\n", "clear ; clc ; close ; // Clear the work space and console\n", "\n", "// Given data\n", "n = 3.0 // Number of insulators\n", "V = 20.0 // Voltage across each conductor(kV)\n", "c = 1.0/5 // Capacitance ratio\n", "\n", "// Calculations\n", "V_2 = 6.0/5.0 // Voltage across middle unit as top unit\n", "V_1 = V/(1+2*V_2) // Voltage across top unit(kV)\n", "V_3 = V_2*V_1 // Voltage across bottom unit(kV)\n", "C_x = c*(1+(1/V_2)) // Capacitance required\n", "\n", "// Results\n", "disp('PART II - EXAMPLE : 4.9 : SOLUTION :-')\n", "printf('\nCase(a): Voltage on the line-end unit, V_3 = %.2f kV', V_3)\n", "printf('\nCase(b): Value of capacitance required, Cx = %.3f*C', C_x)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }