{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 9: Nuclear Power Plants" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.10: Specific_energy_release_rate.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "f=3.5;//Mass fraction of U-235 in the fuel in percentage\n", "G=180;//Energy per fission in Mev\n", "F=10^13;//The neutron flux in neutrons/cm^2s\n", "sf=577;//Fission cross section of U-235 in barns\n", "M=1.602*10^-13;//One MeV in J\n", "\n", "//Calculations\n", "N=2.372*(f/100)*10^22;//The fuel density for a uranium oxide fuel in nuclei/cm^3\n", "q=G*N*sf*10^-24*F;//The rate of energy release in MeV/cm^3s\n", "qg=q*M;//The rate of energy release in W/cm^3\n", "\n", "//Output\n", "printf('The specific energy release rate for a light water uranium reactor = %3.2f W/cm^3',qg)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.11: Reactor_power_level.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "P=1;//The operating power of a reactor in W\n", "K=1.0015;//The effective multiplication factor of Reactor becomes suppercritical \n", "t=0.0001;//The average neutron life in s\n", "t1=1.0001;//Neutron life time in s\n", "\n", "//Calculations \n", "d=(K-1)/K;//The reactivity \n", "Z=(d*P)/t;//The number of neutrons\n", "n=exp(Z)/10^6;//Neutron density * 10^6\n", "\n", "//Output\n", "printf('The reactor power level at the end of 1s is %3.3f MW',n)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1: Mass_defect_and_binding_energy.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "mp=1.007277;//Atomic Mass of proton in amu\n", "mn=1.008665;//Atomic Mass of neutron in amu\n", "me=0.00055;//Atomic Mass of electron in amu\n", "mo=15.99491;//Atomic Mass of oxygen in amu\n", "np=8;//Number of protons in oxygen\n", "ne=8;//Number of electrons in oxygen\n", "nn=8;//Number of neutrons in oxygen\n", "a=931;//One amu in MeV\n", "No=16;//Number of nucleons in oxygen\n", "\n", "//Calculations\n", "m=(np*mp)+(ne*me)+(nn*mn)-mo;//The mass defect in amu\n", "B=m*a;//Binding energy in MeV\n", "Bn=B/No;//Binding energy per nucleon\n", "\n", "//Output\n", "printf('The mass defect = %3.5f amu \n The binding energy per nucleon = %3.2f MeV ',m,Bn)\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2: Decay_constant.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "amr=226.095;//Atomic mass of radium in amu\n", "AC=6.023*10^23;//Avogadro constant in molecules/g.mol\n", "h=1620;//Half life of radium in years\n", "\n", "//Calculations\n", "D=(0.6931/(h*365*24*3600));//The decay constant in 1/s\n", "Na=AC/amr;//Number of atoms per gram of radium \n", "Ao=D*Na;//Initial activity in dis/s\n", "\n", "//Output\n", "disp(D,'The decay constant (in s^-1) = ');\n", "disp(Ao,'The initial activity of 1 g of radium 226 in dis/s) = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.3: Fuel_consumption.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "F=190;//Each fission of U-235 yeilds in MeV\n", "a=85;//Assuming the Neutrons absorbed by U-235 cause fission in percentage\n", "b=15;//Non fission capture to produce an isotope U-236 in percentage\n", "Q=3000;//The amount of thermal power produced in MW\n", "\n", "//Calculations\n", "E=F*1.60*10^-13;//Each fission yields a useful energy in J\n", "N=1/E;//Number of fissions required \n", "B=[(10^6)*(N*86400)]/(a/100);//One day operation of a reactor the number of U-235 nuclei burned is in absorptions per day\n", "M=(B*235)/(6.023*10^23);//Mass of U-235 consumed to produce one MW power in g/day\n", "M1=M*3;//Mass of U-235 consumed to produce 3000 MW power in g/day\n", "\n", "//Output\n", "printf('The fuel consumed of U-235 per day = %3.1f g/day ',M1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.4: Area_required.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "sa1=10;//Cross section of nucleus in barns\n", "N=2200;//Neutrons in m/s\n", "En1=0.1;//Kinetic energy of neutrons increases in eV\n", "En2=0.02525;//Kinetic energy of neutron in eV\n", "\n", "//Calculations\n", "sa2=sa1/[(En1/En2)^0.5];//The cross section of neutrons in barns\n", "\n", "//Output\n", "printf('The cross section of neutrons = %3.2f barns ',sa2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.5: Microscopic_absorptio.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "U1=99.285;//Uranium consists of U-238 in percentage \n", "U2=0.715;//Uranium consists of U-235 in Percentage\n", "E=0.025;//The energy of neutrons in eV\n", "sc=2.72;//Capture cross section for U-238 in barns\n", "sf=0;//fission cross section for U-238 in barns\n", "sc1=101;//Capture cross section for U-235 in barns\n", "sf1=579;//fission cross section for U-235 in barns\n", "\n", "//Calculations\n", "sa=(U1/100)*(sc+sf)+(U2/100)*(sc1+sf1);//The microscopic absorption cross section of natural uranium in barns\n", "\n", "//Output\n", "printf('The microscopic absorption cross section of natural uranium = %3.1f barns ',sa)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.6: Microscopic_absorptio.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "p=1;//The density of water in g/cm^3\n", "sch=0.332;//The microscopic capture cross section of hydrogen in barn\n", "sco=0.0002;//The microscopic capture cross section of oxygen in barn\n", "\n", "//Calculations\n", "N=(6.023*10^23)*p/18;//Number of molecules of water per cm^3\n", "scw=(2*N*sch*10^-24)+(N*sco*10^-24);//The microscopic capture cross section of water in cm^-1\n", "\n", "//output\n", "printf('The microscopic capture cross section of water = %3.4f cm^-1 ',scw)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.7: Thermal_neutron_flux.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "m=230;//The amount of boron piece in g\n", "mw=10;//The molecular weight of boron \n", "R=9.57*10^13;//Reaction rate in cm^-3s^-1\n", "d=2.3;//Density of boron in g/cm^3\n", "sa=755;//Absorbption cross section in barns\n", "ss=4;//Elastic scattering cross section in barns\n", "\n", "//Calculations\n", "st=sa+ss;//The total cross section in barns\n", "N=(d*6.023*10^23)/mw;//The number density of neutrons in cm^-3\n", "S=N*st*10^-24;//Number density of neutrons for total in cm^-1\n", "F=R/S;//Neutron flux in cm^-2s^-1\n", "L=1/S;//Average distance a neutron travels before it is absorbed in cm\n", "\n", "//Output\n", "disp(F,'The thermal neutron flux (in cm^-2s^-1) = ');\n", "disp(L,'The average distance that a neutron travels before it is absorbed (in cm) = ');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.8: Number_of_collisions.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "Eni=4.8;//The energy of the newly born electron in MeV\n", "Enf=0.025;//The energy of the electron after slow down in eV\n", "A=12;//The mass number of the graphite (carbon)\n", "\n", "//Calculations\n", "L=1-[[(A-1)^2/(2*A)]*log((A+1)/(A-1))];//The logarithmic energy decrement\n", "n=(log(Eni*10^6/Enf))/L;//The number of collisions required to slowdown the neutron \n", "\n", "//Output\n", "printf('The logarithmic energy decrement representing the neutron energy loss per elastic collision = %3.3f \n The number of collisions necessary = %3.0f ',L,n)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.9: Rating_of_reactor.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "f=100;//The reactor is fuelled of natural uranium in tonnes\n", "A=238.05;//The atomic mass of natural uranium \n", "F=10^13;//The average thermal neutron flux in neutrons/cm^2s\n", "A1=235.04;//The atomic mass of U-235\n", "sf=579;//The fission cross section of U-235 in barns\n", "sc=101;//The capture cross section of U-235 in barns\n", "E=200;//The energy released per fission in MeV\n", "P=0.715;//U-235 in natural uranium in percentage\n", "N=2200;//The average thermal neutron in m/s\n", "\n", "//Calculations\n", "n=[(f*1000)*6.023*10^26*(P/100)]/A;//The number of U-235 atoms in the reactor in atoms\n", "R=(sf*10^-24)*F*n;//The rate of fission in the reactor in fissions/s\n", "T=R*E*1.602*10^-19;//Thermal power of the reactor in MW\n", "Rr=T/f;//Rating the reactor MW/tonne\n", "Rc=[[(R*A1*60*60*24)]/(6.023*10^26)];//The rate of consumption of U-235 by fission in kg/day\n", "Rcc=Rc*1000;//The rate of consumption of U-235 by fission in g/day\n", "\n", "//Output\n", "printf('(a) The rating of the reactor = %3.2f MW/tonne \n (b)The rate of consumption of U-235 per day = %3.3f kg/day (or) %3.0f g/day ',Rr,Rc,Rcc)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }