{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 17: Electromagnetic Waves" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 17.1: poynting_vector.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 1 // magnitude\n", "clc;\n", "clear;\n", "close;\n", "//given data :\n", "R=7*10^8;// in m\n", "P=3.8*10^26;// in Watt\n", "S=P/(4*%pi*R^2);\n", "disp(S,'Magnitude of poynting vector,S(W/m^2) = ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 17.2: poynting_vector.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 2 // Poynting vector\n", "clc;\n", "clear;\n", "close;\n", "//given data :\n", "R=1.5*10^11;// in m\n", "P=3.8*10^26;// in Watt\n", "S=P/(4*%pi*R^2);// in W/m^2\n", "Se=round(S*60/(4.2*10^4));\n", "disp(Se,'Poynting vector,Se(cal/cm^2 -min) = ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 17.3: amplitudes_of_electric_and_magnetic_field_radiation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 3 // Amplitude and magnetic field\n", "clc;\n", "clear;\n", "close;\n", "//given data :\n", "S=2;// in cal/cm^2- min\n", "EH=S*4.2*10^4/60;// joule/m^2 sec\n", "mu0=4*%pi*10^-7;\n", "epsilon0=8.85*10^-12;\n", "EbyH=sqrt(mu0/epsilon0);\n", "E=sqrt(EH*EbyH);\n", "H=EH/E;\n", "E0=E*sqrt(2);\n", "H0=H*sqrt(2);\n", "disp(E,'E is ,(V/m)=')\n", "disp(H,'H is ,(Amp-turn/m)=')\n", "disp(E0,'Amplitude of electric fields of radiation,E0(V/m) = ')\n", "disp(H0,'Magnetice field of radition ,H0(Amp-turn/m) = ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 17.4: amplitudes_of_electric_and_magnetic_field_radiation.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 4 // electric and magnetic field\n", "clc;\n", "clear;\n", "close;\n", "//given data :\n", "r=2;// in m\n", "mu0=4*%pi*10^-7;\n", "epsilon0=8.85*10^-12;\n", "EbyH=sqrt(mu0/epsilon0);\n", "EH=1000/(4*r^2*%pi^2);// in W/m^2\n", "E=sqrt(EH*EbyH);\n", "H=(EH/E);\n", "disp(E,'Intensities of electric,E(V/m) = ')\n", "disp(H,'Magnetic field of radiation,H(Amp-turn/m) = ')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 17.5: polarisation_degree.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 5 // Degree of polarization\n", "clc;\n", "clear;\n", "close;\n", "//given data :\n", "thetai=45;// in degree\n", "n=1.5;/// index\n", "thetar=asind(sind(thetai)/n);\n", "Rl=sind(thetai-thetar)^2/sind(thetai+thetar)^2;\n", "Rp=tand(thetai-thetar)^2/tand(thetai+thetar)^2;\n", "D=((Rl-Rp)/(Rl+Rp))*100;\n", "disp(D,'Degree of polarization,D(%) = ')\n", "// answer is wrong in the textbook" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 17.6: frequency.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Example 6 // Frequency\n", "clc;\n", "clear;\n", "close;\n", "//given data :\n", "del=1;// in m\n", "mu=4*%pi*10^-7;// in H/m\n", "sigma=4;// in siemen/m\n", "v=1*10^-3/(%pi*del^2*mu*sigma);\n", "disp(v,'Frequency,v(kHz) = ')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }