{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 10: Nuclear Reactions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.10: Fractional_attenuation_of_neutron_beam_on_passing_through_nickel_sheet.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.10 : : Page-458 (2011)\n", "clc; clear;\n", "N_0 = 6.02252e+26; // Avogadro's constant\n", "sigma = 3.5e-28; // Cross section, square metre\n", "rho = 8.9e+03; // Nuclear density, Kg per cubic metre\n", "M = 58; // Mass number \n", "summation = rho/M*N_0*sigma; // Macroscopic cross section, per metre\n", "x = 0.01e-02; // Thickness of nickel sheet, metre\n", "I0_ratio_I = exp(summation*x/2.3026); // Fractional attenuation of neutron beam on passing through nickel sheet\n", "printf('\nThe fractional attenuation of neutron beam on passing through nickel sheet = %6.4f', I0_ratio_I);\n", "// Result\n", "// The fractional attenuation of neutron beam on passing through nickel sheet = 1.0014 \n", "// Wrong answer given in the textbook" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.11: Scattering_contribution_to_the_resonance.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.11 : : Page-458 (2011)\n", "clc; clear;\n", "lambda = sqrt(1.45e-021/(4*%pi)); // Wavelength, metre\n", "W_ratio = 2.3e-07; // Width ratio\n", "sigma = W_ratio*(4*%pi)*lambda^2*10^28; // Scattering contribution, barn\n", "printf('\nThe scattering contribution to the resonance = %4.2f barns', sigma);\n", "// Result\n", "// The scattering contribution to the resonance = 3.33 barns " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.12: Estimating_the_relative_probabilities_interactions_in_the_indium.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.12 : : Page-458 (2011)\n", "clc; clear;\n", "sigma = 2.8e-024; // Cross section, metre square\n", "lambda = 2.4e-11; // de Broglie wavelength, metre\n", "R_prob = %pi*sigma/lambda^2; // Relative probabilities of (n,n) and (n,y) in indium\n", "printf('\nThe relative probabilities of (n,n) and (n,y) in indium = %5.3f', R_prob);\n", "// Result\n", "// The relative probabilities of (n,n) and (n,y) in indium = 0.015 \n", " " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.13: Peak_cross_section_during_neutron_capture.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.13 : : Page-459 (2011)\n", "clc; clear;\n", "h = 6.625e-34; // Planck's constant, joule sec \n", "m_n = 1.67e-27; // Mass of neutron, Kg\n", "E = 4.906; // Energy, joule \n", "w_y = 0.124; // radiation width, eV\n", "w_n = 0.007*E^(1/2); // Probability of elastic emission of neutron, eV\n", "I = 3; // Total angular momentum\n", "I_c = 2; // Total angular momentum in the compound state\n", "sigma = ((h^2)*(2*I_c+1)*w_y*w_n)*10^28/(2*%pi*m_n*E*1.602e-019*(2*I+1)*(w_y+w_n)^2); // Cross section, barns\n", "printf('\nThe cross section of neutron capture = %5.3e barns', sigma);\n", "// Result\n", "// The cross section of neutron capture = 3.755e+004 barns \n", " " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.14: Angle_at_which_differential_cross_section_is_maximumat_a_givem_l_value.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.14 : : Page-459 (2011)\n", "clc; clear;\n", "R = 5; // Radius, femto metre\n", "k_d = 0.98; // The value of k for deutron \n", "k_p = 0.82; // The value of k for triton\n", "theta = rand(1,5); // Angles at which differetial cross section is maximum, degree\n", "// Use of for loop for angles calculation(in degree)\n", "for l = 0:4\n", " theta = round((acos((k_d^2+k_p^2)/(2*k_d*k_p)-l^2/(2*k_d*k_p*R^2)))*180/3.14);\n", " printf('\nFor l = %d', l);\n", " printf(',the value of theta_max = %d degree', ceil(theta));\n", " end\n", "// Result\n", "// For l = 0,the value of theta_max = 0 degree\n", "// For l = 1,the value of theta_max = 8 degree\n", "// For l = 2,the value of theta_max = 24 degree\n", "// For l = 3,the value of theta_max = 38 degree\n", "// For l = 4,the value of theta_max = 52 degree " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.15: Estimating_the_angular_momentum_transfer.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.15 : : Page-459 (2011)\n", "clc; clear;\n", "k_d = 2.02e+30; // The value of k for deutron\n", "k_t = 2.02e+30; // The value of k for triton\n", "theta = 23*3.14/180; // Angle, radiams\n", "q = sqrt (k_d+k_t-2*k_t*cos(theta))*10^-15; // the value of q in femto metre\n", "R_0 = 1.2; // Distance of closest approach, femto metre\n", "A = 90; // Mass number of Zr-90\n", "z = 4.30; // Deutron size, femto metre\n", "R = R_0*A^(1/3)+1/2*z; // Radius of the nucleus, femto metre\n", "l = round(q*R); // Orbital angular momentum\n", "I = l+1/2 // Total angular momentum\n", "printf('\nThe total angular momentum transfer = %3.1f ', I);\n", "// Result\n", "// The total angular momentum transfer = 4.5 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.1: Q_value_for_the_formation_of_P30_in_the_ground_state.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.1 : : Page-455 (2011) \n", "clc; clear;\n", "M = 47.668; // Total mass of reaction, MeV\n", "E = 44.359; // Total energy, MeV\n", "Q = M-E; // Q-value, MeV\n", "printf('\nThe Q-value for the formation of P30 = %5.3f MeV', Q);\n", "\n", "// Result\n", "// The Q-value for the formation of P30 = 3.309 MeV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.2: Q_value_of_the_reaction_and_atomic_mass_of_the_residual_nucleus.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.2 : : Page-455 (2011) \n", "clc; clear;\n", "E_x = 7.70; // Energy of the alpha particle, MeV\n", "E_y = 4.44; // Energy of the proton, MeV\n", "m_x = 4.0; // Mass number of alpha particle\n", "m_y = 1.0; // Mass number of protium ion\n", "M_X = 14; // Mass number of nitrogen nucleus\n", "M_Y = 17; // Mass number of oxygen nucleus\n", "theta = 90*3.14/180; // Angle between incident beam direction and emitted proton, degree\n", "A_x = 4.0026033; // Atomic mass of alpha particle, u\n", "A_X = 14.0030742; // Atomic mass of nitrogen nucleus, u\n", "A_y = 1.0078252; // Atomic mass of proton, u\n", "Q = ((E_y*(1+m_y/M_Y))-(E_x*(1-m_x/M_Y))-2/M_Y*sqrt((m_x*m_y*E_x*E_y))*cos(theta))/931.5; // Q-value, u\n", "A_Y = A_x+A_X-A_y-Q; // Atomic mass of O-17, u\n", "printf('\nThe Q-value of the reaction = %9.7f u \nThe atomic mass of the O-17 = %10.7f u', Q, A_Y);\n", "\n", "// Result\n", "// The Q-value of the reaction = -0.0012755 u \n", "// The atomic mass of the O-17 = 16.9991278 u \n", "// Atomic mass of the O-17 : 16.9991278 u " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.3: Kinetic_energy_of_the_neutrons_emitted_at_given_angle_to_the_incident_beam.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.3 : : Page-455 (2011) \n", "clc; clear;\n", "m_p = 1.007276; // Atomic mass of the proton, u\n", "m_H = 3.016049; // Atomic mass of the tritium, u \n", "m_He = 3.016029; // Atomic mass of the He ion, u \n", "m_n = 1.008665; // Atomic mass of the emitted neutron, u\n", "Q = (m_p+m_H-m_He-m_n)*931.5; // Q-value in MeV\n", "E_p = 3; // Kinetic energy of the proton, MeV \n", "theta = 30*3.14/180; // angle, radian\n", "u = sqrt(m_p*m_n*E_p)/(m_He+m_n)*cos(theta); //\n", "v = ((m_He*Q)+E_p*(m_He-m_p))/(m_He+m_n); //\n", "E_n = (u+sqrt(u^2+v))^2; // Kinetic energy of the emitted neutron,MeV\n", "printf('\nThe kinetic energy of the emitted neutron = %5.3f MeV', E_n);\n", "\n", "// Result\n", "// The kinetic energy of the emitted neutron = 1.445 MeV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.4: Estimating_the_temperature_of_nuclear_fusion_reaction.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.4 : : Page-456 (2011) \n", "clc; clear;\n", "r_min = 4e-015; // Distance between two deutrons, metre\n", "k = 1.3806504e-023; // Boltzmann's constant, Joule per kelvin\n", "alpha = 1/137; // Fine structure constant\n", "h_red = 1.05457168e-034; // Reduced planck's constant, Joule sec\n", "C = 3e+08; // Velocity of light, meter per second\n", "T = alpha*h_red*C/(r_min*k);\n", "printf('\nThe temperature in the fusion reaction is = %3.1e K', T);\n", "\n", "// Result\n", "// The temperature in the fusion reaction is = 4.2e+009 K " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.5: Excitation_energy_of_the_compound_nucleus.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa11.5 : : Page-456 (2011) \n", "clc; clear;\n", "E_0 = 4.99; // Energy of the proton, MeV \n", "m_p = 1; // Mass number of the proton\n", "m_F = 19; // Mass number of the flourine\n", "E = E_0/(1+m_p/m_F); // Energy of the relative motion, MeV\n", "A_F = 18.998405; // Atomic mass of the fluorine, amu\n", "A_H = 1.007276; // Atomic mass of the proton, amu\n", "A_Ne = 19.992440; // Atomic mass of the neon, amu\n", "del_E = (A_F+A_H-A_Ne)*931.5; // Binding energy of the absorbed proton, MeV\n", "E_exc = E+del_E; // Excitation energy of the compound nucleus, MeV\n", "printf('\nThe excitation energy of the compound nucleus = %6.3f MeV', E_exc);\n", "\n", "// Result\n", "// The excitation energy of the compound nucleus = 17.074 MeV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.6: Excitation_energy_and_parity_for_compound_nucleus.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.6 : : Page-457 (2011) \n", "clc; clear;\n", "E_d = 0.6; // Energy of the deutron, MeV \n", "m_d = 2; // Mass number of the deutron\n", "m_Li = 19; // Mass number of the Lithium\n", "E = E_d/(1+m_d/m_Li); // Energy of the relative motion, MeV\n", "A_Li = 6.017; // Atomic mass of the Lithium, amu\n", "A_d = 2.015; // Atomic mass of the deutron, amu\n", "A_Be = 8.008; // Atomic mass of the Beryllium, amu\n", "del_E = (A_Li+A_d-A_Be)*931.5; // Binding energy of the absorbed proton, MeV\n", "E_exc = E+del_E; // Excitation energy of the compound nucleus, MeV\n", "l_f = 2; // orbital angular momentum of two alpha particle\n", "P = (-1)^l_f*(+1)^2; // Parity of the compound nucleus\n", "printf('\nThe excitation energy of the compound nucleus = %6.3f MeV\nThe parity of the compound nucleus = %d', E_exc, P);\n", "\n", "// Result\n", "// The excitation energy of the compound nucleus = 22.899 MeV\n", "// The parity of the compound nucleus = 1 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.7: Cross_section_for_neutron_induced_fission.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.7 : : Page-457 (2011)\n", "clc; clear;\n", "lambda = 1e-016; // Disintegration constant, per sec\n", "phi = 10^11; // Neutron flux, neutrons per square cm per sec\n", "sigma = 5*lambda/(phi*10^-27); // Cross section, milli barns\n", "printf('\nThe cross section for neutron induced fission = %d milli barns', sigma);\n", "// Result\n", "// The cross section for neutron induced fission = 5 milli barns " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.8: Irradiance_of_neutron_beam_with_the_thin_sheet_of_Co59.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.8 : : Page-457 (2011)\n", "clc; clear;\n", "N_0 = 6.02252e+026; // Avogadro's constant \n", "rho = 8.9*10^3; // Nuclear density of Co-59, Kg per cubic metre\n", "M = 59; // Mass number\n", "sigma = 30e-028; // Cross section, per square metre\n", "phi = 10^16; // Neutron flux, neutrons per square metre per sec\n", "d = 0.04e-02; // Thickness of Co-59 sheet, metre\n", "t = 3*60*60; // Total reaction time, sec\n", "t_half = 5.2*365*86400; // Half life of Co-60, sec \n", "lambda = 0.693/t_half; // Disintegration constant, per sec\n", "N_nuclei = round(N_0*rho/M*sigma*phi*d*t); // Number of nuclei of Co-60 produced\n", "Init_activity = lambda*N_nuclei; // Initial activity, decays per sec\n", "printf('\nThe number of nuclei of Co60 produced = %5.2e \nThe initial activity per Sq. metre = %1.0g decays per sec', N_nuclei, Init_activity);\n", "// Result\n", "// The number of nuclei of Co60 produced = 1.18e+019 \n", "// The initial activity per Sq. metre = 5e+010 decays per sec " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10.9: Bombardment_of_protons_on_Fe54_target.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab code Exa10.9 : : Page-458 (2011)\n", "clc; clear;\n", "d = 0.1; // Thickness of Fe-54 sheet, Kg per squre metre\n", "M = 54; // Mass number of Fe \n", "m = 1.66e-027; // Mass of the proton, Kg\n", "n = d/(M*m); // Number of nuclei in unit area of the target, nuclei per square metre\n", "ds = 10^-5; // Area, metre square\n", "r = 0.1; // Distance between detector and target foil, metre\n", "d_omega =ds/r^2; // Solid angle, steradian\n", "d_sigma = 1.3e-03*10^-3*10^-28; // Differential cross section, square metre per nuclei\n", "P = d_sigma*n; // Probablity, event per proton\n", "I = 10^-7; // Current, ampere\n", "e = 1.6e-19; // Charge of the proton, C\n", "N = I/e; // Number of protons per second in the incident beam, proton per sec\n", "dN = P*N; // Number of events detected per second, events per sec\n", "printf('\nThe number of events detected = %d events per sec', dN);\n", "// Result\n", "// The number of events detected = 90 events per sec " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }