{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Review of Electromagnetic waves" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: Atomic_Spacing_of_Nacl.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear \n", "clc\n", "disp('Exa-3.1');\n", "w=0.250; theta=26.3;n=1 // n=1 for hydrogen atom and rest all are given values\n", "d=n*w/(2*sind(theta)); // bragg's law\n", "printf('Hence the atomic spacing is %.3f nm.',d);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: Time_taken_to_release_an_electron.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear \n", "clc\n", "disp('Exa-3.2');\n", "I=120;r=0.1*10^-9;Eev=2.3 //I-intensity in W/m^2 r in m & E in electron volt\n", "A=%pi*r^2;K=1.6*10^-19; // A=area and K is conversion factor from ev to joules\n", "t= Eev*K/(I*A); //time interval\n", "printf('The value of time interval was found out to be %.1f sec',t);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3: Solution_for_a_and_b.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear \n", "clc\n", "disp('Exa-3.3(a)');\n", "w=650*10^-9;h=6.63*10^-34;c=3*10^8; //given values and constant taken in comfortable units\n", "E=h*c/w; printf('The Energy of the electron is %.3e J ',E);\n", "E=E/(1.6*10^-19);printf('which is equivalent to %f eV\n',E);\n", "printf('The momentum of electron is p=E/c i.e %.2f/c \n',E);\n", "disp('Exa-3.3(b)');\n", "E2=2.40; //given energy of photon.\n", "w2=h*c*10^9/(E2*1.6*10^-19); //converting the energy in to eV and nm \n", "printf('The wavelength of the photon is %.2f nm',w2);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: Solution_for_a_b_and_c.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear \n", "clc\n", "disp('Exa-3.4(a)');\n", "hc=1240; phi=4.52 //both the values are in eV\n", "w1=hc/phi; \n", "printf('The cutoff wavelength of the tungsten metal is %.3fnm\n ',w1);\n", "disp('Exa-3.4(b)');\n", "w2=198; //given value of wavelength \n", "Kmax=(hc/w2)-phi;printf('The max value of kinetic energy is %.3f eV\n',Kmax);\n", "disp('Exa-3.4(c)');\n", "Vs=Kmax; printf('The numerical value of the max kinetic energy is same as stopping potential in volts.Hence %.2f V',Vs);\n", " " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5: Solution_for_a_b_and_c.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear \n", "clc\n", "disp('Exa-3.5(a)');\n", "T1=293; Kw=2.898*10^-3;\n", "w1=Kw/T1;\n", "printf('The wavelength at which emits maximum radiation is %.2f um.\n',w1*10^6);\n", "disp('Exa-3.5(b)');\n", "w2=650*10^-9; \n", "T2=Kw/w2;\n", "printf('The temperature of the object must be raised to %.0f K.\n',T2);\n", "disp('Exa-3.5(c)');\n", "x=(T2/T1)^4; printf('Thus the thermal radiation at higher temperature is %.2e times the room (lower) tempertaure.\n',x);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.6: Solution_for_a_b_c_and_d.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear \n", "clc\n", "disp('Exa-3.6(a)');\n", "w1=0.24;wc=0.00243;theta=60; //given values w=wavelength(lambeda)\n", "w2=w1+(wc*(1-cosd(theta))); \n", "printf('The wavelength of x-rays after scattering is %.4f nm\n',w2);\n", "disp('Exa-3.6(b)');\n", "hc=1240;\n", "E2=hc/w2;E1=hc/w1; printf('The energy of scattered x-rays is %.0f eV\n',E2);\n", "disp('Exa-3.6(c)');\n", "K= E1-E2; //The kinetic energy is the difference in the energy before and after the collision;\n", "printf('The kinetic energy of the x-rays is %.3f eV\n',K);\n", "disp('Exa-3.6(d)');\n", "phi2=atand(E2*sind(theta)/(E1-E2*cosd(theta)))\n", "printf('The direction of the scattered eletron is %.1f degrees',phi2);" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }