{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2: THE ELECTRON" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.1: CALCULATE_FORCE_ACCELERATION_AND_KINETIC_ENERGY.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 2.1\n", "\n", "//given values\n", "E=2400;//electric field intensity in V/m\n", "V=90;//potential difference in V\n", "e=1.6*10^-19;//the charge on electron in C\n", "m=9.12*10^-31;//mass of electron in kg\n", "\n", "//Calculation\n", "F=e*E;\n", "disp(F,'The force(in N) on electron is');\n", "a=F/m;\n", "disp(a,'Its acceleration (in m/s^2)');\n", "KE=e*V;\n", "disp(KE,'The Kinetic Energy(in J) of particle is');\n", "v=sqrt(2*KE/m);\n", "disp(v,'The velocity(in m/s) of the electron')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2: CALCULATE_LINEAR_VELOCITY_AND_RADIUS.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 2.2\n", "\n", "//given values\n", "V=900;//potential difference in V\n", "B=0.01;//uniform magnetic field in Wb/m^2\n", "em=1.76*10^11;//value of e/m in C/kg\n", "\n", "//calculation\n", "v=sqrt(2*em*V);\n", "disp(v,'The linear velocity(in m/s) of electron is');\n", "R=v/(em*B);\n", "disp(R,'The radius(in m) of the circular path is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3: CALCULATE_MASS.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 2.3\n", "\n", "//given values\n", "d=6*10^-3;//distance between plates in m\n", "V=900;//potential difference in V\n", "B=0.5;//uniform magnetic field in Wb/m^2\n", "Q=1.6*10^-19;//the charge on electron in C\n", "R=10.6*10^-2;//circular track radius in m\n", "\n", "//calculation\n", "v=V/(B*d);\n", "m=R*Q*B/v;\n", "disp(m,'The mass(in kg) of particle')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4: CALCULATE_RADIUS_AND_CHARGE_ON_OIL_DROP.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 2.4\n", "\n", "//given values\n", "V=6920;//potential difference in V\n", "d=1.3*10^-3;//distance between in m\n", "v=1.9*10^-4;//velocity in m/s\n", "p=0.9*10^3;//density of oil in kg/m^3\n", "n=1.81*10^-5;//coefficient of viscosity in N-s/m^2\n", "g=9.81;//accelaration due to gravity in m/s^2\n", "pi=3.14;//standard constant\n", "\n", "//calculation\n", "a=sqrt((9*n*v)/(2*g*p));\n", "disp(a,'The radius(in m) of the drop is');\n", "E=V/d;\n", "Q=4*pi*(a^3)*p*g/(3*E);\n", "disp(Q,'The value of charge(in C) on oil drop is')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }