{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 13: NUCLEAR REACTIONS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.1: CALCULATE_THE_ENERGY_AVAILABLE.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 13.1\n", "\n", "//given data\n", "m1=7.0183;//mass of 3Li7 in a.m.u\n", "m2=4.0040;//mass of 2He4 in a.m.u\n", "m3=1.0082;//mass of 1H1 in a.m.u\n", "Na=6.02*10^26;//Avgraodo no. in 1/kg mole\n", "//rxn = 3Li7 + 1H1 = 2He4 + 2He4 \n", "\n", "//calculations\n", "dm=m1+m3-(2*m2);\n", "E=dm*931;\n", "n=0.1*Na/7;//no of atoms in 100 gm of lithium\n", "TE=n*E;\n", "disp(TE,'Total energy available in MeV')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.2: CALCULATE_THE_ENERGY_RELEASED.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 13.2\n", "\n", "//given data\n", "m1=6.015126;//mass of 3Li7 in a.m.u\n", "m2=4.002604;//mass oh 2He4 in a.m.u\n", "m3=1.00865;//mass of 0n1 in a.m.u\n", "m4=3.016049;//mass of 1H3 in a.m.u\n", "//rxn = 3Li7 + 0n1 = 2He4 + 1H3 + Q\n", "\n", "//calcualtions\n", "dm=m1+m3-(m2+m4);\n", "Q=dm*931;\n", "disp(Q,'energy released in MeV')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.3: WHAT_IS_THE_Q_VALUE_OF_THE_REACTION.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 13.3\n", "\n", "//given data\n", "m1=14.007515;//mass of 7N14 in a.m.u\n", "m2=4.003837;//mass oh 2He4 in a.m.u\n", "m3=17.004533;//mass of 8O17 in a.m.u\n", "m4=1.008142;//mass of 1H1 in a.m.u\n", "//rxn = 7N14 + 2He14 = 8O17 + 1H1\n", "\n", "//calculations\n", "dm=m3+m4-(m1+m2);\n", "Q=dm*931;\n", "disp(Q,'energy released in MeV')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.4: FIND_THE_MASS.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 13.3\n", "\n", "//given data\n", "m1=14.007520;//mass of 7N14 in a.m.u\n", "m2=1.008986;//mass oh 0n1 in a.m.u\n", "//m3=mass of 6C14 in a.m.u\n", "m4=1.008145;//mass of 1H1 in a.m.u\n", "//rxn = 7N14 + 0n1 = 6C14 + 1H1 + 0.55 MeV\n", "\n", "//calculations\n", "Q=0.55;\n", "dm=Q/931;\n", "m3=dm+m1+m2-m4;\n", "disp(m3,'mass of 6C14 in a.m.u')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 13.6: EXPLAIN_MASS_DEFECT.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;clear;\n", "//Example 13.6\n", "\n", "//given data\n", "m0=11.01280;//mass 5B11 in a.m.u\n", "m1=4.00387;//mass of alpha particle in a.m.u\n", "m2=14.00752;//mass of 7N14 in a.m.u\n", "//m3=mass of neutron \n", "E1=5.250;//energy of alpha particle in MeV\n", "E2=2.139;//energy of 7N14 in MeV\n", "E3=3.260;//energy of 0n1 in MeV\n", "\n", "//calculations\n", "m3=(m0*931)+((m1*931)+E1)-((m2*931)+E2)-E3;\n", "disp((m3/931),'mass of neutron in a.m.u')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }