{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5: Torsion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.11: T11.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.11 : ')\n", "\n", "//Given:\n", "d = 20/1000; //m\n", "r = d/2;\n", "l_bc = 0.2;\n", "l_cd = 1.5;\n", "l_da = 0.3;\n", "T_c = 800; //Nm\n", "T_d = -500; //Nm\n", "\n", "//Equilibrium:\n", "//Eqn 1 : 300 = T_a + T_b\n", "\n", "//Compatibility:\n", "//Eqn 2:\n", "coeff_Tb = -l_bc;\n", "coeff_Ta = l_cd + l_da;\n", "\n", "//Solving Equations simultaneously using matrices:\n", "C = [1 1; coeff_Tb coeff_Ta];\n", "b = [300 ; -750];\n", "T = C\b;\n", "\n", "T_b = T(1);\n", "T_a = T(2);\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe reaction at A = %1.0f Nm',T_a);\n", "printf('\nThe reaction at B = %1.0f Nm',T_b);\n", "\n", "//---------------------------------------------------------------------------------END--------------------------------------------------------------------\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.12: T12.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.12 : ')\n", "\n", "//Given:\n", " T = 250; //Nm\n", " G_st = 80; //GPa\n", " G_br = 36; //GPa\n", " ri = 10; //mm\n", " ro = 20; //mm\n", " l_ab = 1.2; //m\n", " \n", " //Equilibrium:\n", " // -Tst-Tbr+250Nm = 0\n", " coeff1_st = -1;\n", " coeff1_br = -1;\n", " b1 = -250;\n", " \n", " //Compatibility:\n", " //phi = TL/JG\n", " \n", " J1 = (%pi/2)*(ro^4 - ri^4);\n", " J2 = (%pi/2)*(ri^4);\n", " coeff2_st = 1/(J1*G_st*10^3);\n", " coeff2_br = -1/(J2*G_br*10^3);\n", "b2 = 0;\n", "\n", "//Solving the above two equations simultaneously using matrices:\n", "A = [coeff1_st coeff1_br;coeff2_st coeff2_br ];\n", "b = [b1 ; b2];\n", "T = A\b;\n", "\n", "T_st = T(1);\n", "T_br = T(2);\n", "\n", "shear_br_max = (T_br*10^3*ri)/(J2); //tou = (Tr)/J\n", "shear_st_min = (T_st*10^3*ri)/(J1); //tou = (Tr)/J\n", "shear_st_max = (T_st*10^3*ro)/(J1); //tou = (Tr)/J\n", "\n", "shear_strain = shear_br_max / G_br;\n", "shear_strain = shear_strain;\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe Torque acting on Steel = %1.2f Nm',T_st);\n", "printf('\nThe Torque acting on Brass = %1.2f Nm',T_br);\n", "printf('\nThe maximum shear stress experienced by Steel = %1.2f MPa',shear_st_max);\n", "printf('\nThe minimum shear stress experienced by Steel = %1.2f MPa',shear_st_min);\n", "printf('\nThe maximum shear stress experienced by Brass = %1.2f MPa',shear_br_max);\n", "printf('\nThe shear strain at the interface = %1.5f *10^-3 rad',shear_strain);\n", "\n", "\n", "//--------------------------------------------------------END-------------------------------------------------------------------------------------\n", "\n", "\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.13: T13.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.13 : ')\n", "\n", "//Given:\n", " l = 1.2; //m\n", " a = 40; //mm\n", " tou_allow = 56; //MPa\n", " phi_allow = 0.02; //rad\n", " G = 26; //GPa\n", " alpha = (60*%pi)/180; //degrees\n", " \n", " //Calculations:\n", " T_shear1 = (tou_allow*a^3)/(20*1000); // allowable shear stress = (20T)/(a^3)\n", " T_twist1 = (phi_allow*a^4*G*10^3)/(46*l*10^6); //angle of twist =(46TL)/(a^4*G)\n", " \n", " T1 = min(T_shear1, T_twist1);\n", " \n", "//Circular Cross Section:\n", "c_ = (a*a*sin(alpha))/(%pi*2);\n", "c = sqrt(c_);\n", "\n", "J = (%pi/2)*(c^4);\n", "T_shear2 = (tou_allow*J)/(c*1000);\n", "T_twist2 = (phi_allow*J*G*10^3)/(l*10^6);\n", "\n", " T2 = min(T_shear2, T_twist2);\n", "\n", "\n", "//Display:\n", "\n", "printf('\n\nThe largest torque that can be applied at the end of the triangular shaft = %1.2f Nm',T1);\n", "printf('\nThe largest torque that can be applied at the end of the circular shaft = %1.2f Nm',T2);\n", "\n", "\n", "//------------------------------------------------------------------------------END------------------------------------------------------------------" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.15: T15.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.15 : ')\n", "\n", "//Given:\n", "l_cd = 0.5; //m\n", "l_de = 1.5; //m\n", "h =60/1000; //m\n", "w = 40/1000; //m\n", "t_h = 3/1000; //m\n", "t_w = 5/1000; //m\n", "T_c = 60; //Nm\n", "T_d = 25; //Nm\n", "G = 38*10^9; //N/m^2\n", "T1 = T_c - T_d;\n", "\n", "//Average Shear Stress:\n", "area = (w-t_w)*(h-t_h);\n", "\n", "shear_a = T1/(2*t_w*area*10^6);\n", "shear_b = T1/(2*t_h*area*10^6);\n", "\n", "//Angle of Twist:\n", "\n", "ds_t = 2*(((w-t_w)/t_h)+((h-t_h)/t_w));\n", "T = [T_c T1];\n", "l = [l_cd l_de];\n", "phi = 0;\n", "\n", "for i = 1:2\n", " phi = phi+ (T(i)*l(i)*ds_t)/(4*area^2*G);\n", " \n", "end\n", "\n", "//Display:\n", "\n", "printf('\n\nThe average shear stress of the tube at A = %1.2f MPa',shear_a);\n", "printf('\nThe average shear stress of the tube at B = %1.2f MPa',shear_b);\n", "printf('\nThe angle of twist of end C = %1.6f rad',phi);\n", "\n", "//----------------------------------------------------------------------------END-------------------------------------------------------------------------------\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.16: T16.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.16 : ')\n", "\n", "//Given:\n", "T = 85; //Nm\n", "G = 26; //GPa\n", "t = 10; //mm thickness\n", "a = 60; //mm side\n", "l = 1.5; //m\n", "\n", "//Average Shear Stress:\n", "area_m = (a-t)*(a-t);\n", "avg_shear = (T*10^3)/(2*t*area_m); //tou_avg = T/(2tarea_m);\n", "\n", "\n", "//Angle of Twist:\n", "ds_t = (4*(a-t))/t;\n", "phi = (T*10^3*l*10^3*ds_t)/(4*(area_m^2)*G*10^3);\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe average shear stress in the tube at A = %1.1f N/mm^2',avg_shear);\n", "printf('\nThe angle of twist due to loading = %1.5f rad',phi);\n", "\n", "//------------------------------------------------------------------END------------------------------------------------------------------------" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.17: T17.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.17 : ')\n", "\n", "//Given:\n", "tou_allow = 90; //MPa\n", "phi_allow = 2*10^-3; //rad\n", "a = 200; //mm side\n", "angle = (60*%pi)/180;\n", "h = a*sin(angle);\n", "l = 3; //m\n", "t = 5/1000; //m\n", "G = 75*10^9; //N/mm^2\n", "\n", "//Calculations:\n", "area_m = 0.5*a*h*10^-6;//m^2 a = (1/2)bh\n", "ds_t = (3*a)/(t*1000);\n", "\n", "T_shear = (tou_allow*10^6*2*t*area_m); //tou_avg = T/(2tarea_m);\n", "\n", "T_twist = (phi_allow*4*area_m^2*G)/(l*ds_t);\n", "\n", " T = min(T_shear, T_twist);\n", " \n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe maximum torque that the thin tube can be subjected to = %1.1f Nm',T);\n", "\n", "//----------------------------------------------------------------END------------------------------------------------------------------------\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.18: T18.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.18 : ')\n", "\n", "//Given:\n", "fillet_r = 6; //mm\n", "D = 40/1000; //m\n", "d = 20/1000; //m\n", "T = 30; //Nm\n", "D_d = D/d; \n", "r_d = fillet_r/d; \n", "k = 1.3;\n", "\n", "//Maximum Shear Stress:\n", "c = D/2;\n", "J = (%pi/2)*(c^4)\n", "max_shear = (k*T*c)/(J*10^6); // tou = K(Tc/J)\n", "\n", "//Display:\n", "\n", "printf('\n\nThe maximum shear stress in the shaft due to the applied torques = %1.2f MPa',max_shear);\n", "\n", "//----------------------------------------------------------------END------------------------------------------------------------------------" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.19: T19.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.19 : ')\n", "\n", "//Given:\n", "ro = 50/1000; //m\n", "ri = 30/1000; //m\n", "c = ro;\n", "shear = 20*10^6; //N/m^2\n", "\n", "//Maximum Elastic Torque:\n", "J = (%pi/2)*((ro^4)-(ri^4));\n", "T_y = (shear*J)/c; // tou = Tc/J\n", "T_y = T_y/1000; //in kN\n", "\n", "//Plastic Torque:\n", "x0 = 0.03;\n", "x1 = 0.05;\n", "I = integrate('rho^2','rho',x0,x1)\n", "Tp = (2*%pi*I*shear);\n", "Tp= Tp/1000;\n", "\n", "//Outer Shear Strain:\n", "strain = (0.286*10^-3*ro)/(ri);\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe maximum torque that can be applied to the shaft without causing the material to yield = %1.2f kNm',T_y);\n", "printf('\nThe plastic torque that can be applied to the shaft = %1.2f kNm',Tp);\n", "printf('\nThe minimum shear strain at the outer radius of the shaft = %1.7f rad',strain);\n", "\n", "\n", "//----------------------------------------------------------------END------------------------------------------------------------------------\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1: T1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.1 : ')\n", "\n", "//Given:\n", "r = 50; //mm\n", "J = (%pi/2)*(r^4); //polar moment of inertia\n", "tou_max = 56; //MPa\n", "T = (tou_max*J)/(r*10^6); //toumax = Tc/J\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe resultant internal torque = %1.0f kNm',T);\n", "\n", "//-----------------------------------------------------------------END-------------------------------------------------------------------------------------------------\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.20: T20.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.19 : ')\n", "\n", "//Given:\n", "r = 20/1000; //m\n", "l = 1.5; //m\n", "phi = 0.6; //rad\n", "shear_y = 75*10^6; //N/m^2\n", "\n", "//Calculations:\n", "max_shear_strain = (phi*r)/(l); //phi = (strain*L)/r\n", "strain_y = 0.0016;\n", "\n", "r_y = (r*strain_y)/(max_shear_strain); //by ratios\n", "\n", "//T= (%pi*shear_y)*(4c^3 - r_y^3)/6;\n", "c = r;\n", "\n", "T = (%pi*shear_y)*(4*c^3 - r_y^3)/6;\n", "T = T/1000;\n", "\n", "//Display:\n", "\n", "printf('\n\nThe torque needed to twist the shaft by 0.6 rad = %1.2f kNm',T);\n", "\n", "//----------------------------------------------------------------END------------------------------------------------------------------------\n", "\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.21: T21.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.21 : ')\n", "\n", "//Given:\n", "l = 1.5; //m\n", "G = 42*10^3; //GPa\n", "co = 50; //mm\n", "ci = 25;//mm\n", "shear_y = 84; //N/mm^2\n", "strain_y = 0.002; //rad\n", "\n", "//Plastic Torque:\n", "T_p = ((2*%pi)*(co^3 - ci^3)*shear_y)/3;\n", "phi_p = (strain_y*l*10^3)/ci;\n", "\n", "J = (%pi/2)*(co^4 - ci^4);\n", "shear_r = (T_p*co)/J;\n", "shear_i = (shear_r*ci)/(co);// shear = Tc/J\n", "\n", "G = shear_y/strain_y; \n", "\n", "phi_dash = (T_p*l*10^3)/(J*G); //phi = TpL/JG;\n", "\n", "phi = phi_p - phi_dash;\n", "T_p = T_p/10^6;\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe plastic torque Tp = %1.2f x 10^6 Nmm',T_p);\n", "printf('\nThe permanent twist of the tube if Tp is removed = %1.5f rad',phi);\n", "\n", "\n", "//----------------------------------------------------------------END------------------------------------------------------------------------" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3: T3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.3 : ')\n", "\n", "//Given:\n", "T1 = 4250; //kNmm\n", "T2 = -3000; //kNm\n", "T3 = T1+T2; //kNm\n", "r = 75; //mm\n", "\n", "//Section Property:\n", "J = (%pi/2)*(r^4); //polar moment of inertia\n", "\n", "//Shear Stress:\n", "c_a = 75; //mm\n", "tou_a = (T3*c_a*1000)/J; //tou = Tc/J\n", "\n", "c_b = 15; //mm\n", "tou_b = (T3*c_b*1000)/J; //tou = Tc/J\n", "\n", "//Display:\n", "\n", "printf('\n\nThe shear stress developed at A = %1.2f MPa',tou_a);\n", "printf('\nThe shear stress developed at B = %1.3f MPa',tou_b);\n", "\n", "//--------------------------------------------------------------------------------------END-------------------------------------------------------------------------------\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4: T4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.4 : ')\n", "\n", "//Given:\n", "di = 80; //mm\n", "ri = 40/1000; //m\n", "d0 = 100; //mm\n", "ro = d0/2000; //m\n", "F = 80; //N\n", "l1 = 0.2; //m\n", "l2 = 0.3; //m\n", "\n", "//Internal Torque:\n", "T = F*(l1+l2);\n", "\n", "//Section Property:\n", "J = (%pi/2)*((ro^4)-(ri^4));\n", "\n", "//Shear Stress:\n", "c_o = 0.05;//m\n", "tou_o = (T*c_o)/(J*10^6);\n", "\n", "c_i = 0.04; //m\n", "tou_i = (T*c_i)/(J*10^6);\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe shear stress in the inner wall = %1.3f MPa',tou_i);\n", "printf('\nThe shear stress in the outer wall = %1.3f MPa',tou_o);\n", "\n", "\n", "//---------------------------------------------------------------------END-------------------------------------------------------------------------------------------\n", "\n", "\n", " " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.5: T5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.5 : ')\n", "\n", "//Given:\n", "P = 3750; //W\n", "N = 175; //rpm\n", "allow_shear = 100; //MPa\n", "\n", "//Calculations:\n", "ang_vel = (2*%pi*N)/60; // rad/s\n", "T = P/ang_vel; //P = T*angular velocity\n", "\n", "c = ((2*T*1000)/(%pi*allow_shear))^(1/3);\n", "d = round(2*c);\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe required diameter of the shaft = %1.0f mm',d);\n", "\n", "//------------------------------------------------------------------END------------------------------------------------------------------------------" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.6: T6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.6 : ')\n", "\n", "//Given:\n", "di = 30; //mm\n", "ri= (di/2000); //m\n", "d0 = 42; //mm\n", "ro = (d0/2000); //m\n", "P = 90; //kW\n", "max_shear = 50; //MPa\n", "\n", "//Calculations:\n", "c = ro; //m\n", "J = (%pi/2)*((ro^4)-(ri^4)); //Polar moment of inertia of hollow shaft\n", "T = (max_shear*J)/c; //tou max = Tc/J\n", "\n", "//P = 2(%pi)fT\n", "f = (P)/(2*%pi*T*10^3);\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe required frequency of rotation of the shaft = %1.1f Hz',f);\n", "\n", "//---------------------------------------------------------------------------END------------------------------------------------------------------------\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.7: T7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.7 : ')\n", "\n", "//Given:\n", "E = 80*10^3; //MPa\n", "d = 14/1000; //m\n", "r = d/2; //m\n", "R = 100; //mm\n", "l_ac = 0.4; //m\n", "l_cd = 0.3; //m\n", "l_de = 0.5; //m\n", "T_c = 280;//Nm\n", "T_a = 150; //Nm\n", "T_d = 40; //Nm\n", "T_ac = T_a; //Nm\n", "T_cd = T_ac - T_c; \n", "T_de = T_cd - T_d;\n", "\n", "//Angle of Twist:\n", "J = (%pi/2)*(r^4);\n", "\n", "T = [T_ac T_cd T_de];\n", "l = [l_ac l_cd l_de];\n", "\n", "sumTwist = 0;\n", "\n", "for i= 1:3\n", " sumTwist = sumTwist+ ((T(i)*l(i))/(J*E*10^6));\n", "end\n", "\n", "displacement = - sumTwist*R;\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe angle of twist of the shaft = %1.3f rad',sumTwist);\n", "printf('\nThe displacement of tooth P on gear A = %1.1f mm',displacement);\n", "\n", "//---------------------------------------------------------------------END------------------------------------------------------------------\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.8: T8.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.8 : ')\n", "\n", "//Given:\n", "T = 45; //N\n", "G = 80; //GPa\n", "d = 20/1000; //m\n", "r = d/2; //m\n", "l_dc = 1.5; //m\n", "l_ab = 2; //m\n", "r1 = 75/1000; //m\n", "r2 = 150/1000; //m\n", "\n", "//Internal Torque:\n", "F = T/r2;\n", "T_d_x = F*r1;\n", "\n", "//Angle of twist:\n", "J = (%pi/2)*(r^4);\n", "phi_c = (T*l_dc)/(2*J*G*10^9);\n", "phi_b = (phi_c*r1)/r2;\n", "\n", "phi_ab = (T*l_ab)/(J*G*10^9);\n", "\n", "phi_a = phi_b + phi_ab;\n", "\n", "//Display:\n", "\n", "\n", "printf('\n\nThe angle of twist of end A of shaft AB = + %1.4f rad',phi_a);\n", "\n", "//----------------------------------------------------------------------------END--------------------------------------------------------------------------------" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.9: T9.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clear all; clc;\n", "\n", "disp('Scilab Code Ex 5.9 : ')\n", "\n", "//Given:\n", "d = 50; //mm\n", "r = d/2;\n", "c = d/2;\n", "l_buried = 600; //mm\n", "G = 40*10^3; //MPa\n", "F = 100; //N\n", "l_handle= 150; //mm\n", "l_ab = 900; //mm\n", "\n", "//Internal Torque:\n", "T_ab = F*2*l_handle;\n", "t = T_ab/l_buried;\n", "\n", "//Maximum Shear Stress:\n", "J = (%pi/2)*(r^4);\n", "tou_max = (T_ab*c)/(J);\n", "\n", "//Angle of Twist:\n", "\n", "x0=0;\n", "x1=l_buried;\n", "X=integrate('x','x',x0,x1);\n", "\n", "phi_a = ((T_ab*l_ab)+(50*X))/(J*G); \n", "\n", "//Display:\n", "\n", "\n", "\n", "printf('\n\nThe maximum shear stress in the post = %1.2f N/mm^2',tou_max);\n", "printf('\nThe angle of twist at the top of the post = %1.5f rad',phi_a);\n", "\n", "//---------------------------------------------------------------------------END----------------------------------------------------------------------------\n", "" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }