{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Torsion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.10: evaluation_of_the_strain_energy_for_different_cases.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Ta = 100 ; // Torque in N-m at A\n", "Tb = 150; // Torque in N-m at B\n", "L = 1.6 ; // Length of shaft in meter\n", "G = 80e09 ; // Modulus of elasticity\n", "Ip = 79.52e-09; // polar moment of inertia in m4\n", "Ua = ((Ta^2)*L)/(2*G*Ip) // Strain energy at A\n", "disp('joule',Ua,'Torque acting at free end')\n", "Ub = ((Tb^2)*L)/(4*G*Ip) // Strain energy at B\n", "disp('joule',Ub,'Torque acting at mid point')\n", "a = (Ta*Tb*L)/(2*G*Ip) // dummy variabble\n", "Uc = Ua+a+Ub ; // Strain energy at C\n", "disp('joule',Uc,'Total torque')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.11: Evaluation_of_the_strain_energy_of_a_hollow_shaft.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "t = 480 ; // Torque of constant intensity\n", "L = 144 ; // Length of bar\n", "G = 11.5e06; // Modulus of elasticity in Psi\n", "Ip = 17.18 ; // Polar moment of inertia\n", "U = ((t^2)*(L^3))/(G*Ip*6) // strain energy in in-lb\n", "disp('in-lb',U,'The strain energu for the hollow shaft is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: Calculation_of_maximum_shear_stress_and_permissible_torque_in_the_bar.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "d = 1.5; // diameter of bar in inch\n", "L = 54 ; // Length of bar in inch\n", "G = 11.5e06 ; // modulus of elasticity in psi \n", "// Part (a)\n", "T = 250 ; // torque\n", "t_max = (16*T*12)/(%pi*(d^3)); // maximum shear stress in bar\n", "Ip = (%pi*(d^4))/32 ; // polar miment of inertia \n", "f = (T*12*L)/(G*Ip) ; // twist in radian\n", "f_ = (f*180)/%pi ; // twist in degree\n", "disp('psi',t_max,'Maximum shear stress in the bar is ')\n", "disp('degree',f_,'Angle of twist is')\n", "//Part (b)\n", "t_allow = 6000 ; // allowable shear stress\n", "T1 = (%pi*(d^3)*t_allow)/16; //allowable permissible torque in lb-in\n", "T1_ = T1*0.0831658 ; //allowable permissible torque in lb-ft\n", "f_allow = (2.5*%pi)/180 ; // allowable twist in radian\n", "T2 = (G*Ip*f_allow)/L; // allowable stress via a another method\n", "T2_ = T2*0.0831658; //allowable permissible torque in lb-ft\n", "T_max = min(T1_,T2_); // minimum of the two\n", "disp('lb-ft',T_max,'Maximum permissible torque in the bar is')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: Calculation_of_required_diameter_for_solid_and_hollow_shaft.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "T = 1200 ; // allowable torque in N-m\n", "t = 40e06 ; // allowable shear stress in Pa\n", "f = (0.75*%pi)/180 ; // allowable rate of twist in rad/meter\n", "G = 78e09; // modulus of elasticity\n", "// Part (a) : Solid shaft\n", "d0 = ((16*T)/(%pi*t))^(1/3)\n", "Ip = T/(G*f) ; // polar moment of inertia\n", "d01 = ((32*Ip)/(%pi))^(1/4); // from rate of twist definition\n", "disp('m',d0,'The required diameter of the solid shaft is ')\n", "// Part (b) : hollow shaft\n", "d2 = (T/(0.1159*t))^(1/3) ; // Diamater of hollow shaft in meter\n", "// The above equation comes from solving the following four equation \n", "// t1 = 0.1*d2 ; thickness of shaft\n", "// d1 = d2-(2*t1) ; // diameter of inner radius\n", "// Ip = (%pi/32)*((d2^4)-(d1^4)); // Polar moment of inertia\n", "// r = d2/2\n", "// t = (T*r)/Ip ; // allowable shear stress\n", "d2_ = (T/(0.05796*G*f))^(1/4) ; // Another value of d2 by definition of theta(allow), f = T/(G*Ip)\n", "d1 = 0.8*d2_ ; // because rate of twist governs the design\n", "disp('m',d2,'The required diameter of the hollow shaft is ')\n", "// Part (c) : Ratio of diameter and weight\n", "r1 = d2_/d01 ; // diameter ratio\n", "r2 = ((d2_^2)-(d1^2))/(d01^2) ; // Weight Ratio\n", "disp(r1,'Ratio of the diameter of the hollow and solid shaft is')\n", "disp(r2,'Ratio of the weight of the hollow and solid shaft is')\n", "\n", "\n", "\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: EX3_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "d = 0.03 ; // diameter of the shaft in meter\n", "T2 = 450 ; // Torque in N-m\n", "T1 = 275 ; //\n", "T3 = 175 ; //\n", "Lbc = 0.5 ; // Length of shaft in meter\n", "Lcd = 0.4 ; // Length of shaft in meter\n", "G = 80e09 ; // Modulus of elasticity\n", "Tcd = T2-T1 ; // torque in segment CD\n", "Tbc = -T1 ; // torque in segment BC\n", "tcd = (16*Tcd)/(%pi*(d^3)); // shear stress in cd segment\n", "disp('Pa',tcd,'Shear stress in segment cd is')\n", "tbc = (16*Tbc)/(%pi*(d^3)); // shear stress in bc segment\n", "disp('Pa',tbc,'Shear stress in segment bc is')\n", "Ip = (%pi/32)*(d^4); // Polar monent of inertia\n", "fbc = (Tbc*Lbc)/(G*Ip); // angle of twist in radian\n", "fcd = (Tcd*Lcd)/(G*Ip); // angle of twist in radian\n", "fbd = fbc + fcd ; // angle of twist in radian\n", "disp('radian',fbd,'Angles of twist in section BD')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.6: Calculation_of_various_stress_and_strain_in_circular_tube.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "d1 = 0.06 ; // Inner diameter in meter\n", "d2 = 0.08 ; // Outer diameter in meter\n", "r = d2/2; // Outer radius\n", "G = 27e09 ; // Modulus of elasticity\n", "T = 4000 ; // Torque in N-m\n", "Ip = (%pi/32)*((d2^4)-(d1^4)); // Polar moment of inertia\n", "t_max = (T*r)/Ip ; // maximum shear stress\n", "disp('Pa',t_max,'Maximum shear stress in tube is ')\n", "s_t = t_max ; // Maximum tensile stress\n", "disp('Pa',s_t,'Maximum tensile stress in tube is ')\n", "s_c = -(t_max); // Maximum compressive stress\n", "disp('Pa',s_c,'Maximum compressive stress in tube is ')\n", "g_max = t_max / G ; // Maximum shear strain in radian\n", "disp('radian',g_max,'Maximum shear strain in tube is ')\n", "e_t = g_max/2 ; // Maximum tensile strain in radian\n", "disp('radian',e_t,'Maximum tensile strain in tube is ')\n", "e_c = -g_max/2 ; // Maximum compressive strain in radian\n", "disp('radian',e_c,'Maximum compressive strain in tube is ')\n", "" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.7: Calculation_of_the_required_diameter_d_of_the_shaft.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "H = 40 ; // Power in hp\n", "s = 6000 ; // allowable shear stress in steel in psi\n", "// Part (a)\n", "n = 500 ; // rpm\n", "T = ((33000*H)/(2*%pi*n))*(5042/420); // Torque in lb-in\n", "d = ((16*T)/(%pi*s))^(1/3); // diameter in inch\n", "disp('inch',d,'Diameter of the shaft at 500 rpm')\n", "// Part (b)\n", "n1 = 3000 ; // rpm\n", "T1 = ((33000*H)/(2*%pi*n1))*(5042/420); // Torque in lb-in\n", "d1 = ((16*T1)/(%pi*s))^(1/3); // diameter in inch\n", "disp('inch',d1,'Diameter of the shaft at 3000 rpm')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.8: Calculation_of_maximum_shear_stress_tmax_in_the_shaft_and_the_angle_of_twist.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "d = 0.05 ; // diameter of the shaft\n", "Lab = 1 ; // Length of shaft ab in meter\n", "Lbc = 1.2 ; // Length of shaft bc in meter\n", "Pa = 50000; // Power in Watt at A\n", "Pb = 35000; // Power in Watt at B\n", "Ip = (%pi/32)*(d^4) ; // Polar moment of inertia\n", "Pc = 15000; // Power in Watt at C\n", "G = 80e09; // Modulus of elasticity\n", "f = 10 ; // frequency in Hz \n", "Ta = Pa/(2*%pi*f) // Torque in N-m at A\n", "Tb = Pb/(2*%pi*f) // Torque in N-m at B\n", "Tc = Pc/(2*%pi*f) // Torque in N-m at B\n", "Tab = Ta ; // Torque in N-m in shaft ab\n", "Tbc = Tc ; // Torque in N-m in shaft bc\n", "tab = (16*Tab)/(%pi*(d^3)) ; // shear stress in ab segment\n", "fab = (Tab*Lab)/(G*Ip); // angle of twist in radian\n", "tbc = (16*Tbc)/(%pi*(d^3)); // shear stress in ab segment\n", "fbc = (Tbc*Lbc)/(G*Ip); // angle of twist in radian\n", "fac = (fab+fbc)*(180/%pi); // angle of twist in degree in segment ac\n", "tmax = Tab; // Maximum shear stress\n", "disp('Nm',tmax,'The maximum shear stress tmax in the shaft')\n", "disp('degree',fac,'Angle of twist in segment AC')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }