{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8: Critical speeds of shafts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2_1: rotor_mounted_midway_on_shaft.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "mprintf('Mechanical vibrations by G.K.Grover\n Example 8.2.1\n')\n", "//given data\n", "E=1.96*10^11//youngs modulus in N/m^2\n", "m=5//mass of rotor in kg\n", "d=0.01//dia of shaft in m\n", "I=(%pi/64)*d^4///moment of area in m^4\n", "l=0.4//bearing span in m\n", "e=0.02//distance of CG away from geometric centre of rotor in mm\n", "N=3000//speed of shaft in RPM\n", "//calculations\n", "k=48*E*I/l^3//stiffness of shaft in N/m\n", "Wn=sqrt(k/m)\n", "W=2*%pi*N/60\n", "bet=(W/Wn)\n", "r=(bet^2*e/(1-bet^2))//from Eqn 8.2.2 in Sec 8.2 \n", "rabs=abs(r)//absolute value of displacement\n", "Rd=k*rabs/1000//total dynamic load in bearings in N(divide by 1000 since r is in mm)\n", "F=Rd/2//dynamic load on each bearings in N\n", "//output\n", "mprintf(' The amplitude of steady state vibration of shaft is %f mm\nNOTE:negetive sign shows that displacement is out of phase with centrifugal force\nThe dynamic force transmtted to the bearings is %4.4f N\n The dynamic load on each bearing is %4.4f N',r,Rd,F) " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3_1: disc_mounted_midway_between_bearings.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "mprintf('Mechanical vibrations by G.K.Grover\n Example 8.3.1\n')\n", "//given data\n", "E=1.96*10^11//youngs modulus in N/m^2\n", "m=4//mass of rotor in kg\n", "g=9.81//acc due to gravity in m/sec^2\n", "d=0.009//dia of shaft in m\n", "I=(%pi/64)*d^4///moment of area in m^4\n", "l=0.48//bearing span in m\n", "e=0.003//distance of CG away from geometric centre of rotor in mm\n", "N=760//speed of shaft in RPM\n", "c=49//equivalent viscous damping in N-sec/m\n", "//calculations\n", "K=48*E*I/l^3//stiffness of shaft in N/m\n", "Wn=sqrt(K/m)\n", "W=2*%pi*N/60\n", "bet=(W/Wn)\n", "zeta=c/(2*sqrt(K*m))\n", "r=e*(bet^2/sqrt(((1-bet^2)^2+(2*zeta*bet)^2)))//from Eqn 8.3.4 ,Sec 8.3\n", "Fd=sqrt((K*r)^2+(c*W*r)^2)//dynamic load on bearing in N\n", "Fs=m*g//static load in N\n", "Fmax=Fd+Fs//maximum static load on the shaft under dynamic condition in N\n", "smax=(Fmax*l/4)*(d/2)/I//maximum stress under dynamic condition in N/m^2\n", "ss=(Fs*l/4)*(d/2)/I//maximum stress under dead load condition in N/m^2\n", "Fdamp=(c*W*r)//damping force in N\n", "Tdamp=Fdamp*r//damping torque in N-m\n", "P=2*%pi*N*Tdamp/60//power in Watts\n", "//output\n", "mprintf(' The mamximum stress in the shaft under dynamic condition is %.3f N/(m^2)\n The dead load stress is %.3f N/(m^2)\n The power required to drive the shaft at 760 RPM is %4.4f Watts',smax,ss,P)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4_1: two_critical_speeds.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "mprintf('Mechanical vibrations by G.K.Grover\n Example 8.4.1\n')\n", "//given data\n", "E=1.96*10^11//youngs modulus in N/m^2\n", "I=4*10^-7//moment of area in m^4\n", "M1=100;M2=50//mass of discs 1 and 2 in Kgs\n", "c=0.18//distance of disc 1 from support in m\n", "l=0.3//distance of disc 2 from support in m\n", "g=9.81//aceleration due to gravity in m/sec^2\n", "//calculations\n", "a=[(c^3/(3*E*I)),(c^2/(6*E*I)*(3*l-c));(c^2/(6*E*I)*(3*l-c)),(l^3/(3*E*I))]//from SOM\n", "p=M1*a(1,1)+M2*a(2,2)//from Eqn 8.4.6 ,Sec 8.4\n", "q=M1*M2*(a(1,1)*a(2,2)-(a(1,2)^2))//from Eqn 8.4.6 ,Sec 8.4\n", "Wn1=sqrt((p-sqrt(p^2-4*q))/(2*q))//from Eqn 8.4.6 ,Sec 8.4\n", "Wn2=sqrt((p+sqrt(p^2-4*q))/(2*q))//from Eqn 8.4.6 ,Sec 8.4\n", "Nc1=Wn1*60/(2*%pi)//critical speed in RPM\n", "Nc2=Wn2*60/(2*%pi)//critical speed in RPM\n", "//output\n", "mprintf(' The critical speeds for the system shown in fig 7.2.1 are %4.4f RPM and %4.4f RPM',Nc1,Nc2)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.6_1: right_cantilever_steel_shaft_with_rotor_at_the_end.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "mprintf('Mechanical vibrations by G.K.Grover\n Example 8.6.1\n')\n", "//given data\n", "E=1.96*10^11//youngs modulus in N/m^2\n", "M=10//mass of rotor in kg\n", "g=9.81//acc due to gravity in m/sec^2\n", "ra=0.12//radius of gyration in m\n", "l=0.3//lenght of steel shaft in m\n", "b=0.06//thickness of rotor in m\n", "I=10*10^-8//moment of inertia of section in m^4\n", "//calculations\n", "r=sqrt((ra^2/2)+(b^2/12))\n", "h=3*(r^2)/l^2//from Eqn 8.6.4 ,Sec 8.6\n", "g1=sqrt((2/h)*((h+1)-sqrt((h+1)^2-h)))//natural frequency,from Eqn 8.6.4 ,Sec 8.6\n", "g2=sqrt((2/h)*((h+1)+sqrt((h+1)^2-h)))//natural frequency,from Eqn 8.6.4 ,Sec 8.6\n", "W1=g1*sqrt(3*E*I/(M*l^3))//from Eqn 8.6.4 ,Sec 8.6\n", "W2=g2*sqrt(3*E*I/(M*l^3))//from Eqn 8.6.4 ,Sec 8.6\n", "Nc1=W1*60/(2*%pi)//critical speed in RPM\n", "Nc2=W2*60/(2*%pi)//critical speed in RPM\n", "//output\n", "mprintf(' The operating speed of 10000 RPM is not near to either of \n the critical speeds i.e %4.4f RPM or %4.4f RPM.\n Therefore the operating speed is safe.',Nc1,Nc2)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }