{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6: Photoelectric Effect" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.1: kinetic_energy_of_electrons_ejected_from_the_surface.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Exam:6.1\n", "clc;\n", "clear;\n", "close;\n", "h=6.62*10^-34;\n", "c=3*10^8;\n", "e=1.6*10^-19;\n", "Wavelength_1=2300*10^-10;\n", "W=h*c/Wavelength_1;//Work function\n", "Wavelength_2=1800*10^-10;\n", "E_in=h*c/Wavelength_2;\n", "E=E_in-W;//kinetic energy of the ejected electron(in Joules)\n", "E_1=E/e;//kinetic energy of the ejected electron(in eV)\n", "disp(E_1,'kinetic energy of the ejected electron(in eV)=');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.2: Calculate_the_threshold_frequency_and_the_corresponding_wavelength.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Exam:6.2\n", "clc;\n", "clear;\n", "close;\n", "h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)\n", "c=3*10^8;//speed of light (in m/s)\n", "e=1.602*10^-19;//electron charge(in coulomb)\n", "W=2.3;//work (in eV)\n", "W_1=W*e;//work (in joules)\n", "v_o=W_1/h;//threshold frequency(in Hz)\n", "Wavelength=(h*c/W_1)/10^(-10);//Wavelength in Angstrom\n", "disp(v_o,'threshold frequency(Hz)=');\n", "disp(Wavelength,'Wavelength (in Angstrom)=');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3: Calculate_the_threshold_frequency_and_the_work_function_of_metal.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Exam:6.3\n", "clc;\n", "clear;\n", "close;\n", "h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)\n", "c=3*10^8;//speed of light (in m/s)\n", "e=1.602*10^-19;//electron charge(in coulomb)\n", "wavelength=6800*10^-10;//wavelength of radiation\n", "v_o=c/wavelength;//frequency\n", "W=h*v_o;//Work function\n", "disp(v_o,'threshold frequency(in Hz)=')\n", "disp(W,'work function of metal(in joule)=')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.4: Calculate_the_photons_emitted_by_lamp_per_second.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Exam:6.4\n", "clc;\n", "clear;\n", "close;\n", "h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)\n", "c=3*10^8;//speed of light (in m/s)\n", "L_r =150*8/100;//Lamp rating(in joule)\n", "wavelength=4500*10^-10;//in meter\n", "W=h*c/wavelength;//work function\n", "N=L_r/W;//number of photons emitted by lamp per second\n", "disp(N,'number of photons emitted by lamp per second=')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.5: Determine_the_region_of_electrons_spectrum.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Exam:6.5\n", "clc;\n", "clear;\n", "close;\n", "h=6.6*(10^(-34));//Planck's constant(in m2*kg/s)\n", "c=3*10^8;//speed of light (in m/s)\n", "e=1.6*10^-19;//electron charge(in coulomb)\n", "W=2.24;//work function(in eV)\n", "W_1=W*e;//work function(in joule)\n", "v=(W_1/h)*10^-10;//frequency\n", "wavelength=c/v;//region of electrons spectrum is less than(in angstrom)\n", "disp(wavelength,'region of electrons spectrum is less than(in angstrom)')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.6: Calculate_the_photons_emitted_by_radio_receiver.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Exam:6.6\n", "clc;\n", "clear;\n", "close;\n", "h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)\n", "c=3*10^8;//speed of light (in m/s)\n", "P_o=10*10^3;//Power of radio receiver (in Watt)\n", "v=440*10^3;//Operating frequency\n", "E=h*v;//Energy of each electron\n", "N=P_o/E;//Number of photons emitted/sec\n", "disp(N,'Number of photons emitted/sec by radio receiver=')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.7: wavelength_of_light_which_can_just_eject_electron_from_tungsten_and_from_barrium.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Exam:6.7\n", "clc;\n", "clear;\n", "close;\n", "W_t=4.52;//Work function for tungesten(in eV)\n", "W_b=2.5;//Work function for barrium(in eV)\n", "h=6.62*(10^(-34));//Planck's constant(in m2*kg/s)\n", "c=3*10^8;//speed of light (in m/s)\n", "e=1.6*10^-19;//electron charge(in coulomb)\n", "W_T=W_t*e;//Work function for tungesten(in Joule)\n", "W_B=W_b*e;//Work function for barrium(in Joule)\n", "Wavelength_T=(h*c/W_T)*10^10;//wavelength of light which can just eject electron from tungsten\n", "Wavelength_B=(h*c/W_B)*10^10;//wavelength of light which can just eject electron from barrium\n", "disp(Wavelength_T,'wavelength of light which can just eject electron from tungsten(in Angstrom)=')\n", "disp(Wavelength_B,'wavelength of light which can just eject electron from barrium(in Angstrom)=')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }