{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 19: FLYWHEEL" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 19.1: F1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// sum 19-1\n", "clc;\n", "clear;\n", "R=1200;\n", "b=300;\n", "t=150;\n", "N=500;\n", "m=7100*10^-9*b*t;\n", "Ar=b*t;\n", "Aa=Ar/4;\n", "C=(20280/t^2)+0.957+(Ar/Aa);\n", "w=2*%pi*N/60;\n", "V=w*R*10^-3;\n", "siga=2*10^3*m*V^2/(C*Aa*3);\n", "theta=30*%pi/180;\n", "alpha=30*%pi/180;\n", "x1=10^3*m*(V^2)/(b*t);\n", "y1=cos(theta)/(3*C*sin(alpha));\n", "z1=2000*R*10^-3/(C*t)*((1/alpha)-(cos(theta)/sin(alpha)));\n", "sigrr1=x1*(1-y1+z1);\n", "theta=0*%pi/180;\n", "x2=10^3*m*(V^2)/(b*t);\n", "y2=cos(theta)/(3*C*sin(alpha));\n", "z2=2000*R*10^-3/(C*t)*((1/alpha)-(cos(theta)/sin(alpha)));\n", "sigrr2=x2*(1-y2-z2);\n", "\n", " // printing data in scilab o/p window\n", " printf('axial stress is %0.2f MPa ',siga);\n", " printf('\n tensile stress for theta=30deg is %0.1f MPa ',sigrr1);\n", " printf('\n tensile stress for theta=0deg is %0.2f MPa ',sigrr2);\n", " \n", " //The difference in the value of sigrr1 and sigrr2 is due to rounding-off of values." ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 19.2: F2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// sum 19-2\n", "clc;\n", "clear;\n", "N=350;\n", "theta1=asin(sqrt((3-0.6)/4));\n", "theta1=theta1*180/%pi;\n", "theta2=(180)-theta1;\n", "//Ti=16000+6000*sind(3*theta);\n", "//To=16000+3600*sind(theta);\n", "a=-3600*(cosd(theta2)-cosd(theta1));\n", "b=2000*(cosd(3*theta2)-cosd(3*theta1));\n", "c=a+b;\n", "delU=c;\n", "Ks=0.05;\n", "w=2*%pi*N/60;\n", "I=delU/(Ks*w^2);\n", "V=25;\n", "Ir=I*0.95;\n", "R=V/w;\n", "Mr=Ir/R^2;\n", "rho=7150;\n", "t=sqrt(Mr*(10^6)/(2*%pi*R*2*rho));\n", "b=2*t;\n", "\n", " // printing data in scilab o/p window\n", " printf('t is %0.2f mm ',t);\n", " printf('\n b is %0.2f mm ',b);\n", " printf('\n R is %0.3f m ',R);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 19.3: F3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// sum 19-3\n", "clc;\n", "clear;\n", "N=300;\n", "Ks=0.03;\n", "rho=7150;\n", "Kr=0.9;\n", "w=2*%pi*N/60;\n", "WD=(300*2*%pi)+(4*%pi*200/4);\n", "Tm=400;\n", "delU=%pi*200/16;\n", "Ir=Kr*delU/(w^2*Ks);\n", "R=Ir/(rho*1.5*0.1*0.1*2*%pi);\n", "R=R^(1/5);\n", "t=0.1*R*1000;\n", "b=1.5*t;\n", "\n", " // printing data in scilab o/p window\n", " printf('t is %0.2f mm ',t);\n", " printf('\n b is %0.2f mm ',b);\n", " printf('\n R is %0.4f m ',R);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 19.4: F4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//sum 19-4\n", "clc;\n", "clear;\n", "d=20;\n", "t=12;\n", "Tus=450;\n", "Pmax=%pi*d*t*Tus;\n", "WD=Pmax*t/2*10^-3;\n", "n=0.95;\n", "Wi=WD/n;\n", "delU=5*Wi/6;\n", "N=300;\n", "w=2*%pi*N/60;\n", "Ks=0.2;\n", "I=delU/(Ks*w^2);\n", "Ir=I*0.9;\n", "R=0.5;\n", "m=Ir/R^2;\n", "rho=7150;\n", "t=sqrt(m*10^6/(rho*2*%pi*R*2));\n", "b=2*t;\n", "\n", " // printing data in scilab o/p window\n", " printf('t is %0.1f mm ',t);\n", " printf('\n b is %0.1f mm ',b);\n", " printf('\n R is %0.1f m ',R);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 19.5: F5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// sum 19-5\n", "clc;\n", "clear;\n", "U=(500*2*%pi)+(3*%pi*500/2);\n", "Tm=U/(2*%pi);\n", "delU=2.25*%pi*125/2;\n", "Ks=0.1;\n", "N=250;\n", "w=2*%pi*N/60;\n", "I=delU/(Ks*w^2);\n", "t=0.03;\n", "rho=7800;\n", "R=(I*2/(%pi*rho*t))^(1/4);\n", "V=R*w;\n", "v=0.3;\n", "sigmax=rho*V^2*(3+v)/8*10^-6;\n", "\n", " // printing data in scilab o/p window\n", " printf('R is %0.3f m ',R);\n", " printf('\n sigmax is %0.2f MPa ',sigmax);\n", " " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 19.6: F6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// sum 19-6\n", "clc;\n", "clear;\n", "N=1.5*8*60;\n", "l=200;\n", "t=1.5/2;\n", "W=350*10^3;\n", "WD=0.15*l*W*10^-6;\n", "n=0.9; //since frictional effect is 10%, effciency of system is 90%\n", "Wi=WD/n;\n", "L=400;\n", "delU=(L-(0.15*l))/(L)*10^3*Wi;\n", "Ks=0.12;\n", "w=2*%pi*N/60;\n", "I=delU/(Ks*w^2);\n", "Ir=I*0.9;\n", "R=0.7;\n", "m=Ir/R^2;\n", "rho=7150;\n", "t=sqrt(m*10^6/(rho*2*%pi*R*1.5));\n", "b=1.5*t;\n", "\n", " // printing data in scilab o/p window\n", " printf('t is %0.1f mm ',t);\n", " printf('\n b is %0.1f mm ',b);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 19.7: F7.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// sum 19-7\n", "clc;\n", "clear;\n", "N=144;\n", "//Let n be no. of punches/ min\n", "n=8;\n", "//Let t be timr for 1 punch\n", "t=60/n;\n", "theta=N/60*2*%pi*0.6;\n", "T=2.1;\n", "U=T*theta;\n", "//Let U1 be revolution of crankshaft in t sec\n", "U1=t*N/60*2*%pi;\n", "delU=(U1-theta)/U1*U*10^3;\n", "w=2*%pi*1440/60;\n", "Ks=0.1;\n", "I=delU/(Ks*w^2);\n", "Ir=I*0.9;\n", "rho=7100;\n", "\n", "R=Ir/(rho*0.2*0.1*2*%pi);\n", "R=R^(1/5);\n", "t=0.1*R*1000;\n", "b=0.2*R*10^3;\n", "t=40;\n", "b=80;\n", "R=400;\n", "// printing data in scilab o/p window\n", " printf('t is %0.0f mm ',t);\n", " printf('\n b is %0.0f mm ',b);\n", " printf('\n R is %0.0f mm ',R);" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }